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AFIT/LSCM/ENS/12-21 
Abstract 

  There has been much attention for many years on reducing U.S. fuel imports 

problem in order to improve energy independence. The transportation sector is one of the 

most important components with its share of 28% of total U.S. energy consumption. In 

this research, compressed natural gas (CNG) is examined to see if it can provide at least a 

partial solution to the problem of finding an alternative fuel for the U.S. transportation 

sector.  

To be able to answer this question it is essential to understand both the supply and 

demand sides of the problem. This research aims to exhibit the availability and adequacy 

of CNG to be a full or partial fuel replacement for U.S. transportation sector needs, the 

factors that prevent CNG from being a widely used transportation fuel, the cost-benefit of 

using CNG as a vehicle fuel and feasible changes to make CNG more cost effective. In 

conjunction with putting forth this information for consideration, the short and long term 

best scenarios for CNG use in the transportation sector, provided through the application 

of Analytic Hierarchy Process (AHP), is proposed. 
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CNG AS A FEASIBLE REPLACEMENT FOR THE U.S. TRANSPORTATION  

 I.  Introduction 

In this chapter, a background of the study will be presented first, then the problem 

statement will be provided. Assumptions, limitations and the importance of the study will 

be explained. 

Background of the Study 

Natural Gas is one of the main sources used to satisfy total energy demand in the 

U.S. together with petroleum, coal, nuclear and renewable energies. The transportation 

sector captures a great portion of total energy consumption in the U.S.. Other important 

sectors in energy consumption are electric power generation, industrial, residential and 

commercial sectors. 

The U.S., as one of the world’s most industrialized countries, consumes 98 Q Btu 

(quadrillion British thermal units) per year (United States Department of Energy, 2010), 

nearly 18.7 % of world total energy consumption (United States Department of Energy, 

2011). Natural gas covers 25% of this consumption. Only a small portion of natural gas 

(0.14%) is used for the transportation sector need as vehicle fuel while the majority of 

this source is used for residential and commercial (36%), industrial (30%) and the 

electricity generation sectors (34%) (United States Department of Energy, 2010).  

The transportation sector is an important component of total energy consumption 

in the U.S. with its share of 28%. The dominating energy source in transportation is 

petroleum (93.2%), in the form of gasoline and diesel fuels. Other components are 
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renewable energy (4%), natural gas (2.5%) and electricity (0.3%) (United States 

Department of Energy, 2010). 

Finding efficient and inexpensive energy sources has been a major global 

challenge since the industrial revolution. In highly industrialized countries, like the U.S., 

with constantly growing energy demand, this issue has gained even more importance. 

Both because of competitive worries and energy independency considerations, reducing 

energy imports and standing on its own as much as possible emerges intrinsically as a 

tempting objective. With newly found natural gas reserves in the U.S., accomplishment 

of this objective could be easier than it was anticipated before. 

World reserves of natural gas are immense with almost 72% of it concentrated 

around Middle East and Eurasia. Only Russia, Iran and Qatar account for 54.3%. More 

specifically, the world has 6842 Q Btu of natural gas reserves. The U.S. has proven 

natural gas reserves of 280 Q Btu (4.1% of world total) (United States Department of 

Energy, 2011) and projected recoverable reserves of 2155 quadrillion Btu (MIT, 2010) 

which cannot be easily neglected.  

Domestic energy production in the U.S. is 75 Q Btu per year which corresponds 

to 76.5% of total annual energy consumption of the country. The country imports 30 Q 

Btu per year (30.6%) and exports 8 Q Btu per year (8.2%). Major part of imports is 

petroleum by 25.5 Q Btu per year. The remaining 4.5 Q Btu per year is other resources 

(natural gas, coal, coal coke, biofuels and electricity). The U.S. imports 49% of the 

petroleum it uses (United States Department of Energy, 2011). The largest portion of the 

petroleum is consumed as a transportation fuel at 71% (United States Department of 

Energy, 2010). In other words, the U.S. is 23.5% energy dependent in total. This 
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dependency is mainly caused by petroleum imports at 85% of total transportation energy 

need. This means 14.2% of the country’s energy dependency is a result of using 

petroleum powered vehicles as a means of transportation. Likewise the transportation 

sector is 46% energy dependent because of the same fuel preference. 

Sustainability of shifting petroleum powered vehicles to vehicles that are powered 

by domestically produced fuels is an important matter. There is some research 

investigating the viability of natural gas as a transportation fuel. Yet, in order to deal with 

the viability of this option, its feasibility should be examined principally. Before initiating 

the accounting process of reviewing different strategies and computing possible 

consequences of this shift, the resource quantity, production, storage and transportation 

capacities ought to be checked. It can be said that feasibility paves the way for viability. 

To put it differently, there should be sufficient evidence of adequate supply to further 

investigate the demand side of the equation in terms of viability. 

Problem Statement   

The usage of natural gas as a transportation fuel is achieved through compressed 

natural gas (CNG) and liquefied natural gas (LNG). The reason to compress or liquefy 

natural gas is to create enough energy density to provide the vehicles a sensible range, 

since in its normal form natural gas does not contain enough energy to power a vehicle 

for acceptable distances.  

In this thesis, compressed natural gas (CNG) is examined to see if it can provide 

at least a partial solution to the problem of finding a domestic alternative fuel for the U.S. 

transportation sector.  Furthermore, four proposed scenarios are evaluated with respect to 
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energy security and environmental impact, which are some of the main concerns of the 

U.S., for short-term and long-term with the purpose of developing an understanding of 

the benefits of different utilization of CNG as a transportation fuel. Therefore, the 

following research question is sought to be answered in this study.  

• Is compressed natural gas (CNG) a feasible replacement fuel for the U.S. 

transportation sector? 

To be able to answer this question it is essential to understand the supply side of 

the problem. Before investigating the viability of CNG as a replacement for gasoline and 

diesel fuel, the dominating fuels in the transportation sector, the question of its 

availability and its adequacy to be a full or partial fuel replacement for U.S. 

transportation sector needs to be answered. Adequacy of the U.S.’s natural gas reserves, 

production capacities of relevant firms, storage capabilities that facilitate overcoming 

disruptions in the demand and pipeline capacities to satisfy the seasonally fluctuating 

demand should be explained. 

Next, the factors that prevent CNG from being a widely used transportation fuel 

should be examined.  The cost-benefit of using a CNG vehicle will be calculated, and 

feasible changes to make CNG more cost effective will be examined.  In conjunction 

with answering these questions, the short and long term best scenarios for CNG use in the 

transportation sector will be proposed.  

To answer these primary questions, the research sub-questions in this study are:  

• Based on the current and projected supply of natural gas in the U.S., how 

much of the U.S. transportation sector fuel requirement could ‘possibly’ be 
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replaced by CNG? (Anecdotally – how much CNG would it take to replace all 

of the US transportation sector fuel requirement, and how long would it last?) 

• Based on current U.S. infrastructure (and relatively low cost changes), how 

much of the U.S. transportation sector fuel requirement could ‘feasibly’ be 

replaced by CNG? 

• What are the current barriers to CNG as a transportation fuel replacement? 

What is the cost-benefit (to the individual and nation) of using CNG power 

vehicles? What is needed to make CNG cost effective for the U.S. 

transportation sector, and what is the potential impact of that change? 

• What are the possible and most feasible incremental changes (infrastructure, 

policy, or technology) that would make CNG more available or more cost 

effective for the US transportation sector?  

• What is the best ‘short-term scenario’ for CNG use in the US transportation 

sector? What is the best ‘long-term scenario’ for CNG use in the US 

transportation sector? 

Assumptions 

The energy consumptions of scenarios are assumed to be constant over time as 

well as the end sector and total natural gas and energy consumptions. Consumption 

increases are not forecasted while making target achievement calculations. Likewise, 

natural gas production and storage capacities are assumed to be constant over time for the 

ease of calculations. The heating values for fuel types are taken as constant even though 

they change according to different geographical regions due to different climate 
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conditions. The quantity of projected recoverable domestic natural gas reserves is taken 

from the report of the American Chemistry Council while there are several different 

predictions. LNG import options are ignored in calculations and assumed as insurance for 

the worst-case scenario in order to understand the domestic capabilities and to provide 

the conformance to the energy security policy. Target achievement values are assumed to 

be the relative importance assessments while calculating the priorities of the scenarios. 

Only four scenarios are selected for evaluation, whereas, there might be several scenarios 

for investigation.  

Scope and Limitations 

This study’s scope is the U.S transportation sector and its possible benefits that 

could be gained from utilization of CNG as a vehicle fuel replacement. While conducting 

the analytic hierarchy process for the selection of the best short-term and long-term 

scenarios, only energy security and environmental impact objectives are taken into 

consideration. Other possible objectives, such as implementation costs for scenarios, are 

ignored. 

Importance of the Study 

Confirmation of CNG as a feasible replacement fuel for vehicles will contribute 

achieving some of the most important goals for the U.S. such as decreasing 

environmental impact and gaining energy security. In order to understand the importance 

of CNG as a transportation fuel, we will investigate the abundance of reserves, natural 

gas supply infrastructure and the benefits that could be gained from implementation. We 

will question the best scenarios for short-term and long-term using an analytic hierarchy 
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process. The reader will be able to realize the impact of such a revolution. In the 

following chapter, a literature review will be provided for the purpose of explaining the 

need for this study. 
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 II.  Literature Review 

Natural gas is a clean and domestic energy source for the U.S. Even though it is a 

fossil fuel like petroleum and coal, it can be identified as much more environmental 

friendly. Besides, domestic reserves are encouraging to consider its more widespread 

utilization. A significant amount of energy requirement of the country is satisfied by 

natural gas at about 25%. It is surprising to see the transportation sector seems to be far 

away from taking advantage of natural gas while other end use sectors like industrial, 

commercial, residential and electricity generation sectors are using it as one of their 

prime energy sources. That may be the result of the anticipated on board fuel storage 

space drawback. The main problem of natural gas in its natural form is its low energy 

density. With the same amount of volume of fuel it gives less energy than conventional 

fuels such as gasoline or diesel. The main idea behind compressing the natural gas is to 

make it provide sufficient energy to be able to be used in daily operations. Compressed 

natural gas is a dense form of the natural gas in less than 1/100th of its volume at 

standard atmospheric pressure and temperature. In this form, it could give more energy to 

be considered as a candidate for a transportation sector replacement fuel. 

The purpose of this literature review is to indicate the need for this study via 

improving the understanding of importance, advantages and superiorities as well as the 

limitations of using natural gas for the U.S. and compressed natural gas as a fuel for the 

U.S. transportation sector. 
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Natural Gas 

 
Natural gas is a fossil fuel in a gaseous form which is dominantly composed of 

methane and other hydrocarbons. Natural gas may contain 85 percent methane (CH4) and 

about 10 percent ethane (C2H6), and also contains smaller amounts of propane (C3H8), 

butane (C4H10), pentane (C5H12), and other alkenes (Lumato, 2005). Although natural gas 

(NG) which is a colorless, odorless and tasteless fossil fuel, is a non renewable energy 

resource like other fossil fuels such as petroleum derivatives and coal, and uranium 

(nuclear energy), it is characterized as one of the cleanest and safest energy sources 

worldwide. (Borraz-Sanchez, 2010). 

Natural gas is a combustible mixture of gases which contain carbon and 

hydrogen. The composition of natural gas can change; in figure 1 general components of 

natural gas before refinement process is listed. 

 
 

 Methane CH4 70-90% 
Ethane C2H6 

0-20% Propane C3H8 
Butane C4H10 
Carbon Dioxide CO2 0-8% 
Oxygen O2 0-0.2% 
Nitrogen N2 0-5% 
Hydrogen sulfide H2S 0-5% 
Rare gases A, He, Ne, Xe trace 

Figure 1 Typical Composition of Natural Gas 

(www.NaturalGas.org) 

 

On the other side, natural gas contains small amounts of impurities, including 

carbon dioxide (CO2), hydrogen sulfide (H2S), and nitrogen (N2). These impurities can 
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decrease the heating value and properties of natural gas. In order to make natural gas 

efficient and cleaner burning, it needs to go through a refining process. During the 

refining process the impurities are removed and used as commercial by-products 

(Lumato, 2005). In figure 2, the refining process is shown. Depending on the source and 

type of gas stream, if the gas is together with oil in the source and it is not naturally 

separated from it, gas-oil separators may be necessary. In the condensate separation 

process, free water is separated from natural gas before the dehydration process in which 

the removal of water captured in the form of hydrates takes place. After removal of 

contaminants like hydrogen sulfide, carbon dioxide, helium and oxygen cryogenic 

nitrogen extraction process begins. In the penultimate step methane separation is 

conducted and in the last step natural gas liquids such as ethane, propane, butane and 

pentane are fractioned by boiling. 
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Figure 2 Natural Gas Refining Process 

 (Energy Information Administration, 2006) 

 

The formation of natural gas is not so different than oil’s. It is formed from dead 

marine organisms. Millions of years ago, organic matter from these organisms collected 

on ocean floors and was covered by sediments before full decomposition. Over time, heat 

and pressure of successive layers of sedimentation broke down this organic matter into 

simpler and simpler hydrocarbon chains. The longer chains are liquid at standard 

temperature and pressure and comprise the range of petroleum products—oil, waxes, etc. 

The shortest hydrocarbon chains are gaseous at standard temperature and pressure and 

make up natural gas (McElroy, 2010).  
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Human realization of natural gas as a utilizable resource goes back to 

comparatively recent dates. Mokhatab et al. mention that the Chinese drilled the first 

known NG well in 211 B.C. A few centuries later, they would employ crude bamboos as 

a means to transport NG (Mokhatab, 2006). In North America, in 1816, the Americans 

began using NG for lighting the streets of Baltimore, Maryland. A few years later, in 

1821, William A. Hart would be the first one to succeed in digging a 27ft wellhead in 

Fredonia, New York, USA (Speight, 1993). After many cities had begun replacing their 

gas lamps with electric lamps, expansion of natural gas usage had to slow down until the 

end of World War II, the time the technological progress in pipeline manufacturing, 

metallurgy and welding was achieved (Borraz-Sanchez, 2010). It can be seen from figure 

3 that, in a quarter century since then the consumption of natural gas in the U.S. was 

quadrupled. Still there should be more space for natural gas in the market. In figure 3, we 

could also see that NG usage by the transportation sector is well below other sectors. If it 

had overall bad characteristics as a fuel, it shouldn’t have been utilized this much. Since 

other end use sectors use it widely, natural gas should have some advantages. This may 

be the time for transportation sector to enjoy those advantages. In the following 

paragraphs, some of these advantages will be addressed. 
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Figure 3 U.S. Natural Gas Consumption by End Use 

 (Energy Information Administration, 2010) 

 

Natural gas has superior cleanliness features. Among the fossil fuels, it has the 

lowest carbon intensity, emitting less carbon dioxide per unit of energy generated than 

other fossil fuels. It burns cleanly and efficiently, with very few non-carbon emissions 

(MIT, 2010). Although its combustion does produce greenhouse gases, it is a more 

environmentally clean alternative to petroleum fuels, and it is much safer than other fuels 

in the event of a spill (Alias, 2008). NG produces lower levels of CO2, CO, water vapor 

and particulate matter than other fossil fuels. Figure 4 shows the fossil fuel emission 

levels provided by U.S. Energy Information Administration (EIA) in pounds of pollutants 

per B (Billion) Btu of energy input of fossil fuels (United States Department of Energy, 

1999).  
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 Fossil fuels (pounds per Billion Btu of energy input) 
Contaminant Natural gas  Oil  Coal 
CO2  117,000  164,000  208,000 
CO  40  33  208 
NOx  92  448  457 
SO2  1  1,122  2,591 
Particulates  7  84  2,744 
Mercury  0.0  0.007  0.016 

 

Figure 4 Fossil fuel emission levels  

(United States Department of Energy, 1999) 

 
Natural gas generally requires limited processing to prepare it for end-use, 

compared to oil (MIT, 2010). Natural gas processing plants, also called fractionators, are 

used to remove the impurities or contaminants, such as CO2, H2O, H2S, He, mercury and 

nitrogen found in the raw natural gas as mentioned above. After fractioning is completed 

natural gas liquids, which are also put separately in the market as valuable by-products, 

include ethane, propane, butane and pentane, are obtained as well (Borraz-Sanchez, 

2010). 

One other good property of natural gas is its high recoverability in conventional 

reservoirs at lower costs due to its high compressibility and low viscosity characteristics. 

Also as proven in shale operations, natural gas can be economically recovered from even 

the most unfavorable subsurface environments (MIT, 2010). While oil reservoirs 

naturally produce 10% to 30% of the oil found, natural gas reservoirs generally produce 

70% to 80% since it is in a gaseous form. Because of its compressibility feature more gas 

can be stored in reservoirs than oil (Hefner, 2009). As a result of development in 

technology which makes shales accessible, the level of reserves has been updated to be 

significantly higher. Current U.S. natural gas flow including the contribution of shale gas 



15 

production can be seen in figure 5. Another positive development about natural gas is 

new fractionators. Although new generation natural gas processing plants are smaller in 

capacity they have the advantage of mobility which mitigates the worries about high 

infrastructure investment costs. 

 

Figure 5 Natural Gas Flow 

2010 (Tcf), (Energy Information Administration, 2011) 

 

These positive features of natural gas make it a favorable fuel for different 

sectors.    According to EIA, shown in figure 6, 33.84% of the U.S. natural gas is 

consumed for electric generation. Industrial consumption’s share is 29.86% while 

21.95% is used for residential need and 14.21% is used for commercial purposes. It is 

interesting and worthy of investigation that only 0.14% of total natural gas consumed is 

used as vehicle fuel while the U.S. currently satisfies nearly 25% of its total energy 

requirement from this major and advantageous resource. 
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Figure 6 Natural Gas Consumption by End Use 

 (Energy Information Administration, 2011) 

CNG as a Transportation Fuel 

Under normal conditions, natural gas does not possess enough energy density to 

provide a satisfactory range as gasoline or diesel vehicles when used as a transportation 

fuel. It is for sure not convenient for drivers either to have gigantic fuel tanks on vehicles 

or to stop several times for refueling even in a short distance travel. In order to overcome 

this problem while using natural gas as transportation fuel effectively there are currently 

two main suggested solutions. One of them is liquefying the natural gas by cooling it to 

cryogenic temperatures (-260F) to assure it is keeping less space. Liquefied natural gas is 

abbreviated as LNG and it takes up about 1/600th the volume of natural gas in the gaseous 

state. The tradeoff between having the advantage of storing natural gas in a liquid form 

and the endeavor to keep it cryogenically cold is a matter of debate. The other solution to 

21.95 % 
Residential 

14.21 % 
Commercial 

29.86 % 
Industrial 0.14 % 

Vehicle Fuel 

33.84 % 
Electric  
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fit the gas in a reasonable size tank, is compressing it. The focus material of this study, 

compressed natural gas (CNG) is made by compressing natural gas to less than 1/100th of 

its volume at standard atmospheric pressure and temperature. It is stored and distributed 

in hard containers, at a normal pressure of 200–220 bar (2900–3200 psi), usually in 

cylindrical or spherical shapes.  

The vehicles powered by compressed natural gas need greater gas tank space than 

gasoline or diesel powered vehicles.  Since it is a gas even though it is compressed, rather 

than a liquid like gasoline, CNG takes up more space for each Gallon of Gas Equivalent 

(GGE). CNG has approximately 25% of the energy density of gasoline (Murphy, 2010). 

Therefore, the tanks used to store the CNG usually take up additional space in the trunk 

of a car or bed of a pickup truck which runs on CNG (Alias, 2008). It also requires 

special storing capability. CNG is stored in a steel or carbon fiber tank at approximately 

200 atmospheres. 

Besides the vehicles marketed by original equipment manufacturers, the 

conversion of the ordinary vehicles is also possible. Compressed natural gas can be used 

in any four-stroke (gasoline) and modified Diesel cycle engines. The equipment required 

for CNG to be delivered to a four-stroke engine includes a pressure regulator (a device 

that converts the natural gas from storage pressure to metering pressure) and a gas mixer 

or gas injectors (fuel metering devices). Often assisting the gas mixer is a metering valve 

actuated by a stepper motor relying on feedback from an exhaust gas oxygen sensor. 

Newer CNG conversion kits feature electronic multi-point gas injection, similar to petrol 

injection systems found in most of today's cars (Alias, 2008). Easy conversion of current 

vehicles to CNG could make it appealing for various transportation applications such as 
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daily use for residentially owned light vehicles or heavy vehicles such as commercial 

trucks, water vessels and trains or governmental vehicles like buses, and street sweepers. 

The demand for transportation fuel in the U.S. shows a positive trend. It increased 

on an average of 2.5% per year over the last 40 years as it can be seen from figure 7. This 

requirement is dominantly satisfied by gasoline and diesel. In 2010, the U.S. 

transportation sector fuel requirement was 27,506,882 B Btu. In other words, 26.836 Tcf 

(Trillion cubic feet) of natural gas would be required to replace all transportation sector 

fuel requirements for a year since one cubic foot of natural gas is equal to 1025 Btu based 

on the calculations of U.S. consumption of 2010 (United States Department of Energy, 

2010). Satisfying this rapidly increasing demand as much as possible with domestically 

produced fuels with lower environmental impact rather than imported petroleum fuels 

with high cost and pollution effect emerges as a more logical choice with respect to 

energy independency and environmental concerns. 

 

Figure 7 U.S. Transportation Sector Fuel Consumption 

 (Billion BTU), (Energy Information Administration, 2011) 
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Reserves 

The U.S. natural gas reserves are proven to be abundant with the development of 

shale technology. The United States has predicted reserves of 2,552 Tcf, 32% of which is 

shale gas (827 Tcf) that was thought to be unrecoverable up until recently (American 

Chemistry Council, 2011). This addition to natural gas reserves has changed the attitude 

towards the utilization opportunities of this resource. Total US natural gas resources are 

estimated to be large enough to supply over 100 years of demand under current 

production rates. According to the growth of domestic recoverable reserves, production 

and transportation capacity has begun increasing sharply and a considerable amount of 

decrease in pipeline and LNG imports was experienced. 

The transportation sector which uses only a small amount of these abundant 

reserves and capacity could be considered as a new natural gas market for the reason of 

currently being highly dependent to foreign petroleum products. As mentioned before the 

transportation sector is 46% energy dependent due to wide usage of petroleum. Also the 

sector’s share of total CO2 emissions is about 32% (Energy Information Administration, 

2011). The successful transformation of the transportation sector to use domestic natural 

gas is going to have a significant impact on energy independency of the country as well 

as the environmental bad reputation of the sector. 

Infrastructure 

Natural gas infrastructure is composed of production facilities, LNG import 

terminals, pipelines and refueling stations. The life cycle of natural gas starts with the 

production and ends at end user. After natural gas is extracted from underground it is sent 
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to natural gas processing plants for purification. Then natural gas is pumped into 

pipelines to be sent to demand areas. There, it is served to end users, such as refueling 

stations for vehicles, power plants or industrial facilities. LNG import terminals are 

equipped to regasify the liquefied natural gas that is brought by LNG ships in cryogenic 

temperatures. A general scheme of natural gas infrastructure can be seen in figure 8. 

Natural gas infrastructure components will be examined in the following sections. 

 
 

Figure 8 Natural Gas Infrastructure 

 (MIT, 2010) 
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Production 

Production of natural gas is achieved through three phases. In the beginning, 

reserves that are economically valuable for drilling must be found via advanced 

techniques like seismic exploration, then using vertical or horizontal drilling techniques 

natural gas is extracted. Finally to purify and prepare it for transportation to demand 

areas, as explained in chapter 2.1, natural gas is processed in natural gas processing 

plants (fractionators). All production procedures must be organized in order to meet the 

required qualifications that are dictated by the Natural Gas Act of 1938, the Natural Gas 

Policy Act of 1978, the Outer Continental Shelf Lands Act, the Natural Gas Wellhead 

Decontrol Act of 1989, and the Energy Policy Act of 1992 and controlled by Federal 

Energy Regulatory Commission (FERC). 

The most important factor is the production capacity since the development of 

drilling technologies has allowed abundant reserves to be recoverable once thought to be 

unrecoverable. As it can be seen from Figure 9, the country has a daily production 

capacity of 90.8 Bcf (Billion cubic feet), as of 2010. Natural gas processing capacity in 

the U.S. is growing rapidly. Between 2009 and 2010 13.3 Bcfd (Billion cubic feet per 

day) capacity was added to an existing 77.5 Bcfd (U.S. Energy Information 

Administration, 2011). 
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Figure 9 U.S. Natural Gas Processing Plant Capacity 

(Bcfd), (U.S. Energy Information Administration, 2011) 

 

Since the processing capacity emerges as a bottleneck in the production process, 

the major development has concentrated on increasing it. An important factor taken into 

consideration in building new processing plants seems to be their mobility. The new 

mobile plants allow the producers to relocate them as needed when the newly reachable 

more widespread reserves happen to deplete. In Figure 10, locations of existing U.S. 

natural gas processing plants as of 2010 can be seen. 
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Figure 10 Existing U.S. Natural Gas Processing Plants 

 (Fessler, 2011) 

 

The total U.S. natural gas production was 22.12 Q Btu in 2010 where current 

annual total capacity is 33.97 Q Btu (Energy Information Administration, 2011). This 

shows a capacity utilization of 65.12%. Roughly speaking, there’s more than 1/3 unused 

production capacity in 2010 which can be directed for use in the transportation sector, as 

well as other end use sectors. On the other hand 10.9% of consumed natural gas in the 

U.S. in 2010, Figures 11 and 12, was imported from Canada mainly, but also Trinidad 

and Tobago, and other countries. A trade overview of natural gas over the years can be 

seen in figure 13. Satisfaction of increasing natural gas demand could be maintained with 

domestic supply by eliminating the bottlenecks like production capacity and 

implementing effective policies like the efficient utilization of natural gas as a vehicle 
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fuel. Another consideration about making use of natural gas is its transportation capacity. 

In the next section the means of transportation for natural gas will be discussed. 

  

Figure 11 Net Imports as Share of 
Consumption 

 (Energy Information Administration, 2011) 

Figure 12 Imports by Country of Origin 

 (Energy Information Administration, 
2011) 

 

 
 

Figure 13 Natural Gas Trade Overview over the Years 

 (Energy Information Administration, 2011) 
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Transportation 

Transportation and distribution of natural gas is provided through LNG ships and 

pipelines. LNG has been used as a supplementary source especially in peak demand times 

like winters because of the insufficient natural gas production capacity. LNG imports to 

the U.S. could be expected to drop proportional to the increase of production capacity. 

The U.S. has a total of 18.84 Bcfd LNG import capacity as of 2012 through its 12 import 

terminals. The main means of natural gas transportation is pipeline infrastructure. The 

importance given to the pipelines as the sole means of domestic natural gas transportation 

is increasing. This is because of the federal energy security policies such as the Energy 

Security Act of 2011 which projects to terminate energy imports from outside North 

America by the year 2030. The U.S. daily pipeline capacity has reached 255.13 Bcf as of 

2011 with significant additions over the last 5 years in parallel to this. In the following 

sections two means of natural gas transportation, LNG imports and pipelines, will be 

explained. 

LNG Imports 

In times of insufficient supply to meet demand, such as winter months when 

natural gas production falls behind the requirement, or production has interruptions such 

as the during hurricanes like Rita and Katrina, supply has been supported by LNG 

imports. LNG ships are used to import LNG. Natural gas is liquefied by cooling it to 

cryogenic temperatures (-260 F) at the exporter country terminals, it is carried by 

cryogenic LNG ships and it is regasified at the importer country’s terminal before putting 

it into pipelines.  U.S. LNG import terminals have played an insurance role so far. It 
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could be important to keep this insurance in the drawer, but in the abundance of this 

resource’s domestic reserves, using that option as often as it has been so far should not be 

necessary with respect to energy independency. The U.S. has a total LNG import capacity 

of 18.84 Bcfd (19.31 T Btud) as of 2012 through its 12 import terminals as it is seen in 

Figure 14 (Federal Energy Regulatory Commision, 2012)  In 2010, LNG imports 

accounted for 11% of total natural gas imports and 1.81% of total annual natural gas 

consumption, Figure 15. In accordance with the purpose of this study, LNG imports will 

not be taken into consideration while making calculations. 

 
 

Figure 14 North American LNG Import Terminals 

 (Federal Energy Regulatory Commision, 2012) 
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Figure 15 U.S. Natural Gas Imports 

 (United States Department of Energy, 2010) 

Pipelines 

Pipelines are the main corridors to transport and distribute natural gas. On 

average, 67 Bcf of natural gas is transported daily in the U.S. where pipeline capacity is 

255.13 Bcfd as of 2011 with significant additions of nearly 115 Bcfd over the last 5 

years, as it is seen in Figure 16 (Energy Information Administration, 2012; Energy 

Information Administration, 2008; MIT, 2010). The U.S. pipeline infrastructure can be 

seen in Figure 17. Overall pipeline capacity of 255.13 Bcfd does not appear as a 

constraint, where production capacity is still 90.8 Bcfd by 2010, while meeting the 

increasing natural gas demand. Moreover, the pipeline utilization rate of 73.74% on an 

annual basis in 2011 supports this idea. However the pipeline capacity usage should not 

be determined based on annual utilization average. The utilization could be low in 

periods of low demand like summer months and could be seen as sufficient but in times 

of high demand some pipelines’ utilization might be higher than 100% by way of 
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exceeding certified limits. It is not a dangerous thing to do over a short period time 

because of the high safety design specifications.  

Pipeline design, construction, operating and maintenance are regularized by The 

U.S. Department of Transportation’s standards that are stated in 49 CFR Part 192—

“Transportation of Natural Gas and Other Gas By Pipeline: Minimum Safety Standards” 

(Government Printing Office). Federal Energy Regulatory Commission (FERC) is in 

charge of controlling pipelines obtaining authorization from the Natural Gas Act of 1938, 

the Natural Gas Policy Act of 1978, the Outer Continental Shelf Lands Act, the Natural 

Gas Wellhead Decontrol Act of 1989, and the Energy Policy Act of 1992. FERC certified 

capacity represents a minimum level of service that can be maintained over an extended 

period of time, and not the maximum throughput capability of a system or segment on 

any given day (Energy Information Administration). So it is possible to use additional 

compression to increase throughput temporarily, within safety limits. The bottom-line is, 

in spite of over capacity utilization of pipelines for transportation of natural gas in peak 

demand periods, the U.S. had to import natural gas with LNG ships. With recent 

additions to production capacity, any more additions to production capacity do not seem 

to be as necessary as before with respect to current production and consumption 

quantities. As a result, current U.S. pipeline capacity, together with the continued 

capacity growth rate could allow transporting very large amounts of natural gas, proving 

itself as a non-bottleneck. 
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Figure 16 Natural Gas Pipeline Capacity Additions 

 (Energy Information Administration, 2012) 

 

 

Figure 17 U.S. Pipeline Infrastructure 

 (Energy Information Administration, 2011) 



30 

Refueling 

In the U.S. there are a total of 975 CNG and 46 LNG refueling stations as of 

2012, a very small percentage compared to the number of petroleum refueling stations 

(U.S. Department of Energy, 2012). Most of them are privately owned and are used for 

central refueling. They are not distributed evenly around the country. On the other hand, 

home refueling may be an option. Individual vehicle users may refill their CNG vehicles 

using a residential CNG refueling station, like the one that was made by Honda. The 

main disadvantage of this option is that the vehicle must be in a small radius around the 

house and is not convenient for longer trips due to limited ranges provided by current on-

board fuel storage capacity. Besides, it takes great amount of time like 16 hours to fill a 

natural gas cylinder, since a fast filling option for home refueling has not been developed 

yet. Overall, refueling infrastructure is an area that requires investment. Unless there is a 

solution for increasing the range of CNG powered vehicles and providing a widespread 

refueling infrastructure, refueling is bound to be an important limitation for CNG use for 

transportation. 
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 III.  Methodology 

Introduction 

It has always been a challenge for people to make decisions since it is not possible 

all the time to decide based on precise mathematical computations. Therefore, developing 

decision making methods has been an important need for practitioners and a great point 

of interest for scholars. Correspondingly, decision making literature is enormous. But 

developing the best decision making method for particular real life phenomenon is still a 

challenging struggle. Multi-criteria decision making (MCDM) is one of the most popular 

fields of study of decision making. There are some common notions in different MCDM 

methods which are called alternatives and attributes (also called goals or decision criteria) 

(Triantaphyllou, 2000). 

• Alternatives: Different courses of action available to the decision maker, 

which can be infinite theoretically but assumed to be finite and generally 

few for the ease of operation. There may be a great number of houses 

available for sale, but only a few are thought to be candidates for further 

evaluation for buying. Alternatives are supposed to be screened, 

prioritized and ranked. 

• Multiple Attributes: MCDM problems have multiple decision criteria. 

Each of the multiple attributes represents a different point of view from 

which the alternatives can be assessed. A hotel may be evaluated by its 

cleanliness, service quality and location. 
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• Conflict among Criteria: There may be conflicts among each goal because 

they represent different perspectives of the alternatives. For example, for a 

person who will purchase a car, desired engine size and price of a car may 

conflict. 

• Incommensurable Units: Different decision criteria may be measured by 

different units of measure such as dollars for profit and feet for depth. In 

general, this complexity is an important factor making MCDM problems 

hard to solve. 

• Decision Weights: Decision criteria need to be weighted according to their 

relative importance to each other in most of the MCDM methods. Taste of 

a meal at a restaurant may be more important than the price of it for a 

person. 

• Decision Matrix: An MCDM problem could be expressed in a matrix 

format. A decision matrix A is an (m x n) matrix in which element aij 

indicates the performance of alternative Ai when it is evaluated in terms of 

decision criterion Cj (for i = 1, 2, 3, …, m, and j = 1, 2, 3, …, n). 

Zimmerman defines and shows decision matrix (figure 18) as follows 

(Zimmermann, 1991):  

Let A = { Ai, for i = 1,2,3,... ,M} be a (finite) set of decision alternatives and G = {gi, for j 
= 1,2,3,..., N} a (finite)set of goals according to which the desirability of an action is 
judged. Determine the optimal alternative A* with the highest degree of desirability with 
respect to all relevant goals gi. 
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                          Criteria 
                                C1       C2       C3       ...       CN 
Alternatives          W1       W2      W3      ...      WN 
_______________________________________ 
A1                            a11      a12      a13      ...      a1N 
A2                            a21      a22      a23      ...      a2N 
A3                            a31      a32      a33      ...      a3N 
.                                 .         .         .         .         . 
.                                 .         .         .         .         . 
.                                 .         .         .         .         . 

AM                           aM1     aM2     aM3     ...     aMN 
 

Figure 18 A Typical Decision Matrix 

 (Zimmermann, 1991) 

Most commonly used MCDM’s are the weighted sum model (WSM), the 

weighted product model (WPM) and the analytic hierarchy process (AHP). These models 

use numeric techniques to help decision makers choose among a set of alternatives. This 

is achieved on the basis of the impact of the alternatives on certain criteria and thereby on 

the overall utility of the decision makers. There are three steps in utilizing decision 

making techniques involving numerical analysis of alternatives (Triantaphyllou, 2000): 

1. Determining the relevant criteria and alternatives. 

2. Attaching numerical measures to the relative importance of the criteria and to 

the impacts of the alternatives on these criteria. 

3. Processing the numerical values to determine a ranking of each alternative. 

In this thesis, the AHP method is used for selecting the best scenario for the short 

term, defined as 2012-2015 and the best scenario for the long term, defined as 2012-

2030. Due to its pair-wise comparisons, AHP allows personal judgments and enhances 

the precision of results. It lets users assess the relative weight of multiple criteria or 

multiple options against given criteria in an intuitive manner. AHP provides a proven, 
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effective means to deal with complex decision making and can assist in identifying and 

weighting criteria, analyzing the data collected and expediting the decision making 

process. 

Analytic Hierarchy Process 

According to Saaty, to make a decision in an organized way using AHP to 

generate priorities, we need to decompose the decision into the following steps (Saaty, 

Decision Making With The Analytic Hierarchy Process, 2008). 

1. Define the problem and determine the kind of knowledge sought. 

2. Structure the decision hierarchy from the top with the goal of the decision, 

then the objectives from a broad perspective, through the intermediate levels 

(criteria on which subsequent elements depend) to the lowest level (which 

usually is a set of the alternatives). 

 

Figure 19 AHP Hierarchy of Goals, Objectives and Alternatives 
 (Dalalah, AL-Oqla, & Hayajneh, 2010) 
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3. Construct a set of pair-wise comparison matrices. Each element in an upper 

level is used to compare the elements in the level immediately below with 

respect to it. 

A = �
𝑎11 ⋯ 𝑎1𝑛
⋮ ⋮ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

� = �
𝑤1 𝑤1⁄ ⋯ 𝑤1 𝑤𝑛⁄

⋮ ⋮ ⋮
𝑤𝑛 𝑤1⁄ ⋯ 𝑤𝑛 𝑤𝑛⁄

� 

Figure 20 Pair-wise Comparison Matrix 
                  (Dalalah, AL-Oqla, & Hayajneh, 2010) 
 

4. Use the priorities obtained from the comparisons to weight the priorities in the 

level immediately below. Do this for every element. Then for each element in 

the level below add its weighted values and obtain its overall or global 

priority. Continue this process of weighting and adding until the final 

priorities of the alternatives in the bottom most level are obtained. 

To make comparisons, it requires a scale of numbers that indicates how many 

times more important or dominant one element is over another element with respect to 

the criterion or property, with respect to which element they are compared. Figure 21 

exhibits this scale. 
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Intensity of  

Importance on an  

absolute scale 

Definition    Explanation 

    1 Equal importance  Two activities contribute equally to the 
objective 

3 Moderate importance 
of one over another 

 Experience and judgment slightly 
favor one activity over another 

5 Essential or strong 
importance 

 Experience and judgement strongly 
favor one activity over another 

7 Very strong 
importance 

 An activity is strongly favored and its 
dominance demonstrated in practice 

9 Extreme importance  The evidence favoring one activity 
over another is of the highest 
possible order of affirmation 

2 , 4 , 6 , 8 Intermediate values 
between the two 
adjacent judgments 

 When compromise is needed 

Reciprocals If activity i has one of the above numbers assigned to it when 
compared with activity j , then j has the reciprocal value when 
compared with i 

Rationals Ratios arising from 
the scale 

 If consistency were to be forced 
by obtaining n numerical values 
to span the matrix 

 

Figure 21 The Fundamental Scale 

 (Saaty, 1990) 

The AHP Theory 

The mathematical basis of the AHP is explained below (Coyle, 2004);  

Consider n elements to be compared, C1 … Cn and denote the relative ‘weight’ (or 

priority or significance) of Ci with respect to Cj by aij and form a square matrix A=(aij) of 

order n with the constraints that aij = 1/aji, for i ≠ j, and aii = 1, all i. Such a matrix is said 

to be a reciprocal matrix. 
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The weights are consistent if they are transitive, that is aik = aijajk for all i, j, and k. 

Such a matrix might exist if the aij are calculated from exactly measured data. Then find a 

vector ω of order n such that Aω = λω . For such a matrix, ω is said to be an eigenvector 

(of order n) and λ is an eigenvalue. For a consistent matrix λ = n . 

For matrices involving human judgment, the condition aik = aijajk does not hold as 

human judgments are inconsistent to a greater or lesser degree. In such a case the ω 

vector satisfies the equation Aω= λmaxω and λmax ≥ n. The difference, if any, between λmax 

and n is an indication of the inconsistency of the judgments. If λmax = n then the 

judgments have turned out to be consistent. Finally, a Consistency Index can be 

calculated from (λmax-n)/(n-1). That needs to be assessed against judgments made 

completely at random and Saaty has calculated large samples of random matrices of 

increasing order and the Consistency Indices of those matrices. A true Consistency Ratio 

is calculated by dividing the Consistency Index for the set of judgments by the Index for 

the corresponding random matrix. Saaty suggests that if that ratio exceeds 0.1 the set of 

judgments may be too inconsistent to be reliable. In practice, CRs of more than 0.1 

sometimes have to be accepted. A CR of 0 means that the judgments are perfectly 

consistent. 

Selecting the Best Short-Term and Long-Term Scenarios for CNG Use in the 
Transportation Sector via AHP 

We’ll follow Saaty’s four step organized method to generate priorities to make 

decisions about the possible best short-term and long-term usages of compressed natural 

gas in the US transportation sector using Analytic Hierarchy Process. The analyses for 

short term and long term will be explained separately. 
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Step 1: Define the problem and determine the kind of knowledge sought.  

Problem: What is the best ‘short-term scenario’ for CNG use in the US 

transportation sector? We’d like to make a decision about which vehicle types or 

combination of vehicle types could yield the highest benefit for the U.S. with respect to 

decision criteria explained below in the short term defined as 2012-2015. 

Step 2: Structure the decision hierarchy from the top with the goal of the decision, 

then the objectives from a broad perspective, through the intermediate levels (criteria on 

which subsequent elements depend) to the lowest level (which usually is a set of the 

alternatives). 

As mentioned above, our goal is to achieve maximum benefit from using CNG in 

the transportation sector. In order to measure this benefit we will define two objectives, 

positive environmental impact (P.E.I) and increased energy independency (I.E.I). P.E.I. 

represents the percentage of targeted CO2 reduction from relevant CO2 emission quantity 

through the proposed alternatives, the target being president Obama’s 25 November 2009 

announcement of US Emission Target for Copenhagen (Office of the Press Secretary, 

2009). I.E.I. refers to the percentage of targeted oil dependency reduction. The target for 

I.E.I. is defined by the National Oil Independence Goal, also cited as the Energy Security 

Act 5 of 2011 (Govtrack.us, 2011). These targets will be explained in detail in the target 

achievements section. As for the alternatives, four scenarios are proposed based on 

selected vehicle type’s different current fuel type usages and different utilization 

purposes for these vehicles. Four scenarios are presented below, explaining selected 

vehicle types: 
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Scenario A: 1/3 of all highway vehicles, trains and water vessels. Motorcycles are 

not considered to be a part of highway vehicles due to their limited fuel storage capacity. 

In this scenario, an inclusive combination of all vehicle types is projected. In this way, 

screening the effect of widespread usage of CNG is aimed. 

Scenario B: Medium/heavy trucks, buses, trains and water vessels. The impact of 

using CNG in vehicles other than the residential needs is sought in scenario B to see the 

influence of CNG as a fuel for cargo and public transportation purposes. 

Scenario C: 1/2 of all Trucks (light, medium and heavy), buses, trains and water 

vessels. Since using CNG as a fuel for vehicles needs greater fuel storage space on the 

vehicles according to current technology, the purpose of designing the combination for 

this scenario is to show the effect of utilization CNG as a fuel for the vehicles which 

don’t have critical on board space limitations. 

Scenario D: 1/2 of all light vehicles (cars and light trucks). The main idea behind 

the design of scenario D is to reflect the impact of CNG utilization as a fuel for 

residential vehicles, since they are the leading actor in total transportation energy 

consumption. Besides, it is aimed to be understood if it should be an objective to 

motivate regular people to switch to CNG. 

The decision hierarchy structure containing these alternatives and attributes are 

shown in figure 22 schematically. Here, we want to find out which of the scenarios yields 

the most benefit in terms of the criteria positive environmental impact and increased 

energy independency. 
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Figure 22 The Decision Hierarchy Structure 

 
Step 3: Construct a set of pair-wise comparison matrices. Each element in an 

upper level is used to compare the elements in the level immediately below with respect 

to it. 

Since we don’t have decision makers’ importance assessment for the two decision 

criteria, we follow a method of using all possible main values (1-3-5-7-9) from Saaty’s 

fundamental scale and show the results for all of them. In this way, the decision maker or 

reader could make his own assessment and view the pre-calculated results. Possible 

assessments based on decision makers’ possible evaluations are presented below: 

Assessment 1: I.E.I. has extreme importance compared to P.E.I. The evidence 

favoring increased energy independency (I.E.I.) over positive environmental impact 

(P.E.I.) is of the highest possible order of affirmation. 
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Assessment 2: I.E.I. has very strong importance compared to P.E.I. I.E.I. is 

strongly favored and its dominance demonstrated in practice. 

Assessment 3: I.E.I. has essential or strong importance compared to P.E.I. 

Experience and judgment strongly favor I.E.I. over P.E.I. 

Assessment 4: I.E.I. has moderate importance compared to P.E.I. Experience and 

judgment slightly favor I.E.I. over P.E.I.  

Assessment 5: I.E.I. and P.E.I have equal importance. Both of them contribute 

equally to the objective. 

Assessment 6: P.E.I. has moderate importance compared to I.E.I. Experience and 

judgment slightly favor P.E.I. over I.E.I.  

Assessment 7: P.E.I. has essential or strong importance compared to I.E.I. 

Experience and judgment strongly favor P.E.I. over I.E.I.  

Assessment 8: P.E.I. has very strong importance compared to I.E.I. P.E.I. is 

strongly favored and its dominance demonstrated in practice. 

Assessment 9: P.E.I. has extreme importance compared to I.E.I. The evidence 

favoring I.E.I. over P.E.I. is of the highest possible order of affirmation. 

An example of pair-wise comparison matrices based on the assessments above is 

presented in table 1. The computed eigenvector or priorities, denoted as p(P.E.I.) and 

p(I.E.I.), give the relative ranking of decision criteria. The values denoted as m(P.E.I.) 

and m(I.E.I.) represent the same weighting before normalization of priorities. Calculating 

eigenvectors is done by multiplying together the entries in each row of the matrix and 

then taking the 𝑛𝑡ℎ root of that product, which is taking the geometric mean. 
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Normalization of the weights is done by proportioning the eigenvector value of the 

relevant criteria to the sum of the eigenvector values. 

 

Assess. 1 P.E.I. I.E.I.     Priorities   
P.E.I. 1 0.111 m(P.E.I)= 0.333 p(P.E.I)= 0.10 
I.E.I. 9 1 m(I.E.I)= 3 p(I.E.I)= 0.90 

 

Table 1 A Pair-wise Comparison Matrix 

 
The m(P.E.I.), m(I.E.I) and p(P.E.I.), p(I.E.I) values are computed as shown in the 

below example: 

For assessment 1:  

m(P.E.I.) = � 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒(𝑃.𝐸. 𝐼. ) 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 (𝑃.𝐸. 𝐼. )
∗ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒(𝐼.𝐸. 𝐼. ) 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 (𝑃.𝐸. 𝐼. )

2
 

m(P.E.I.) = √1 ∗ 0.1112  = 0.333  

m(I.E.I.) = � 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒(𝑃.𝐸. 𝐼. ) 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 (𝐼.𝐸. 𝐼. )
∗ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒(𝐼.𝐸. 𝐼. ) 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 (𝐼.𝐸. 𝐼. )

2
 

m(I.E.I.) = √9 ∗ 12  = 3 

Since in assessment 1 I.E.I has extreme importance compared to P.E.I., when 

calculating m(P.E.I.) the intensity of importance values are 1 and 0.111 respectively and 

when calculating m(I.E.I.) the intensity of importance values are 9 and 1 respectively 

according to the Saaty’s fundamental scale in figure 21 . Degrees of roots are 2 in these 

calculations, because we are taking the geometric means of two numbers. 

p(P.E.I.) = m(P. E. I. ) (m(P. E. I. )  + m(I. E. I. ) )⁄   

p(P.E.I.) = 0.333 (3 + 0.333)⁄   = 0.10 
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p(I.E.I.) = m(I. E. I. ) (m(P. E. I. )  + m(I. E. I. ) )⁄   

p(I.E.I.) = 3 (3 + 0.333)⁄   = 0.90 

Calculating priority values p(P.E.I.) and p(I.E.I.) is a globalization process which 

makes the pair-wise weights of criteria for relative assessment sum up to 1. This is 

obtained by dividing the relative m value by the sum of two m values. For assessment 1, 

we are using 0.333 for m(P.E.I.) and 3 for m(I.E.I.) since we obtained these values in the 

previous calculations. As a result, under the conditions of assessment 1, we conclude that 

the priority of positive environmental impact is 10% where the priority of increased 

energy independence is 90%. Priorities relative to the other eight assessments are 

obtained in the same way. 

Step 4: Use the priorities obtained from the comparisons to weight the priorities in 

the level immediately below. Do this for every element. Then for each element in the 

level below add its weighted values and obtain its overall or global priority. Continue this 

process of weighting and adding until the final priorities of the alternatives in the bottom 

most level are obtained. 

The method used for calculating eigenvectors for scenarios’ weightings according 

to relative decision criteria is similar to the calculation of pair-wise comparison matrices 

of decision criteria. This time pair-wise weights are determined by their target 

achievement values by proportioning them to each other, since those values constitute the 

relative importance of each scenario, according to relevant decision criteria. Target 

achievement values are used as given here. Details about calculating the target 

achievement values, which are provided in table 2 for the short-term, are given after the 

steps of analytic hierarchy process are completed with the intention of concept integrity. 
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Calculated 
Achievements P.E.I. I.E.I. 
Scenario A 38.43 56.61 
Scenario B 41.56 55.74 
Scenario C 37.97 54.31 
Scenario D 37.01 57.26 

 

Table 2 Calculated Target Achievements for the short-term 

 
When calculating m(P.E.I.), the ratios of calculated target achievement values, 

shown in table 2, are used to find each comparison result of scenario A vs. all scenarios, 

one at a time. So the numbers in the m(P.E.I.) formula are calculated like this: 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐴 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑃.𝐸. 𝐼 =
38.43
38.43

= 1         

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐵 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑃.𝐸. 𝐼 =
38.43
41.56

= 0.925 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐶 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑃.𝐸. 𝐼 =
38.43
37.97

= 1.012 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐷 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑃.𝐸. 𝐼 =
38.43
37.01

= 1.039 

The comparison results used for obtaining m(I.E.I.) are calculated in the same 

way like this: 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐴 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐼.𝐸. 𝐼 =
56.61
56.61

= 1         

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐵 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐼.𝐸. 𝐼 =
56.61
55.74

= 1.016 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐶 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐼.𝐸. 𝐼 =
56.61
54.31

= 1.042 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐷 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐼.𝐸. 𝐼 =
56.61
57.26

= 0.989 
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The m(P.E.I.) and m(I.E.I.) values obtained by geometric mean of the relevant 

numbers are calculated above. Degrees of roots are 4 in these calculations, because we 

are taking the geometric means of four numbers. 

For scenario A with respect to criteria P.E.I. and I.E.I.:  

m(P.E.I.) = �

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐴 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑃.𝐸. 𝐼
∗ 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐵 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑃.𝐸. 𝐼
∗ 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐶 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑃.𝐸. 𝐼 
∗ 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐷 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑃.𝐸. 𝐼

4

 

m(P.E.I.) = √1 ∗ 0.925 ∗ 1.012 ∗ 1.0394  = 0.993  

m(I.E.I.) = �

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐴 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐼.𝐸. 𝐼
∗ 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐵 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐼.𝐸. 𝐼
∗ 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐶 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐼.𝐸. 𝐼 
∗ 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴 𝑣𝑠 𝐷 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐼.𝐸. 𝐼

4

 

m(I.E.I.) = √1 ∗ 1.016 ∗ 1.042 ∗ 0.9894  =  1.012 

The p(P.E.I.) and p(I.E.I.) values are computed as shown in below example: 

p(P.E.I.) = 0.933 (0.933 + 1.074 +  0.981 + 0.956)⁄   = 0.2480 

p(I.E.I.) = 1.012 (1.012 + 0.996 +  0.970 + 1.023)⁄   = 0.2528 

Calculating priority values p(P.E.I.) and p(I.E.I.) is a globalization process which 

makes the weights of a scenario for relative criteria sum up to 1. This is obtained by 

dividing the relative m value by the sum of all four m values. For scenario A, we are 

using the priority value of 0.933 as calculated and explained above and other priority 

values of 1.074, 0.981 and 0.956 calculated in the same way for p(P.E.I.). Again for 

scenario A, we are using the priority value of 1.012 as calculated and explained above 

and other priority values of 0.996, 0.970 and 1.023 calculated in the same way for 

p(I.E.I.). As a result, we conclude that the priority of scenario A is 24.80% with respect to 
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positive environmental impact where the priority of scenario A is 25.28% with respect to 

increased energy independence. Priorities relative to the other three scenarios are 

obtained in the same way. 

Overall priority of each scenario, according to each of the assessments, are 

obtained through multiplying priorities of each alternative for each decision criteria by 

their relevant assessment priorities and summing them up.  

The overall priority of scenario A, according to assessment 1, is computed as 

shown below: 

For assessment 1: 

Ranking of Alternative A = (0.10*0.2480) + (0.90*0.2528) = 0.2524 

Assessment 1 gives 0.10 priority to positive environmental impact criteria and 

scenario A has a 0.2480 priority with respect to this criterion where assessment 1 gives 

0.90 priority to increased energy independency criteria and scenario A has a 0.2480 

priority with respect to this criterion. As a result, under the assumptions of assessment 1, 

the overall priority of scenario A is 0.2524 or 25.24%. Overall priorities for the other 

three scenarios related to assessment 1, and each of the priorities for four scenarios 

related to the rest of the assessments are calculated in the same way. 

In order to test the consistency of decision makers’ knowledge, an inconsistency 

test is required as it is explained in the AHP Theory section. Since the order of the matrix 

is 2 (n = 2) in this analysis, we will not be doing a consistency analysis. In figure 23, 

which is The Average Random Consistency Index of a sample size of 500 matrices 

obtained by Saaty, the order of the random matrix (upper row) and corresponding index 

of consistency for random judgments (lower row) can be seen. For n = 2 the 
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corresponding index of consistency for random judgments is 0, which means 

inconsistency is not an issue for the 2 x 2 matrix of scores. 

n 1 2 3 4 5 6 7 8 9 10 
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 

Figure 23 Random Index for the criteria used in decision making process 

 (Saaty, 1980) 

Target Achievements 

In order to explain target achievement calculations, which are to be declared after 

the completion of the AHP steps, relevant data is needed. To understand how much each 

of the vehicle type is contributing to the energy consumption, the data that is shown in 

figure 24 is obtained from the Center for Transportation Analysis Energy and 

Transportation Science Division. The values in the table presents the annual consumption 

of each vehicle type in T (trillion) Btu. Using these data, current energy consumption of 

each alternative by fuel type, as well as total energy consumptions of the alternatives are 

calculated as shown below. In this way, we could understand how much of the imported 

oil will be replaced by CNG, indicating the increased energy independence values. 

Vehicles powered by electricity are not considered for replacement since they are 

themselves alternative to petroleum based fuels. 

Scenario A: 1/3 of All Highway Vehicles and Trains and water vessels. As 

explained before, motorcycles are not included because of their limited fuel storage 

capacity. 

Energy consumption for gasoline: 

(1 3) ∗ (8761.4 + 7221.3 + 7.8 +  611.5 + 198.8) = 5600.27 𝑇 𝐵𝑡𝑢⁄   
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Energy consumption for diesel: 

(1 3) ∗ (49.6 + 341.8 + 169.5 + 5452.7 + 468.4 + 253.0) = 2245 𝑇 𝐵𝑡𝑢⁄   

Energy consumption for liquefied petroleum gas: 

(1 3) ∗ (45.0 + 20.3)  = 21.77 𝑇 𝐵𝑡𝑢⁄   

Energy consumption for residual fuel oil: 

(1 3) ∗ (839.4)  = 279.80 𝑇 𝐵𝑡𝑢⁄  

Total current energy consumption for Scenario A: 

5600.27 + 2245 + 21.77 + 279.80 = 8146.84 𝑇 𝐵𝑡𝑢 

To be able to measure the target achievements we have to know the targets and 

the current situations. The Energy Security Act 5 of 2011 shows the target for energy 

independency. In this bill, it is stated that it is the goal of the United States to reduce oil 

consumption by the quantity that is equal to or greater than the quantity of oil imported 

by the United States from outside of North America by calendar year 2030 (as compared 

to the rate of oil consumption projected for calendar year 2030 as of the date of 

enactment of this Act). According to the Energy Information Administration, the U.S. net 

imports of oil is 9,441,000 bbls (barrels) per day for 2010, 2,302,000 bbls of which is 

from Canada and 837,000 bbls of which is from Mexico (Energy Information 

Administration, 2011). As the U.S. oil trade partners inside of North America, Canada 

and Mexico are taken into account for the calculations as the only countries that oil trade 

will continue. It is assumed that oil import quantities from these countries as well as U.S. 

domestic consumption quantity will be the same as 2010 for the timeframes defined as 

short-term and long-term in this study. On a yearly basis, import values given above can 

be interpreted as 3,445,97M (million) bbls of total net imports, 840.23 M bbls from 
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Canada and 305.51 M bbls from Mexico. This means, as of 2010, Canada and Mexico’s 

share (1145.74 M bbls) in total net oil imports is 33.25%. Total oil consumption of the 

U.S. is 36.96 Q Btu in 2010 (U.S. Cencus Bureau, 2012). 

 

  Gasoline 
Diesel 
fuel LPG Jet fuel 

 Fuel 
oil 

Nat.
gas Electricity Total 

16,661.4 HIGHWAY 6,013.6 65.3 
  

22.0 0.7 22,763.0 

Light vehicles 16,042.1 391.4 45.0 
  

0.0 0.0 16,478.5 
   Cars 8,761.4 49.6 

     
8,811.0 

   Light trucks 7,221.3 341.8 45.0 
    

7,608.1 

   Motorcycles 59.4 
      

59.4 

Buses 7.8 169.5 0.0 
  

22.0 0.7 200.0 
   Transit 0.8 68.3 0.0 

  
22.0 0.7 91.8 

   Intercity 
 

31.4 
     

31.4 

   School 7.0 69.9 
     

76.9 

Medium/heavy trucks 611.5 5,452.7 20.3 
    

6,084.5 
237.1 NONHIGHWAY 721.4 0.0 2,099.3 839.4 616.8 312.2 4,826.1 

Air 38.2 0.0 0.0 2,099.3 0.0 0.0 0.0 2,137.5 
   General aviation 38.2 

  
182.3 

   
220.6 

   Domestic air carriers 
   

1,530.8 
   

1,530.8 
   International air 
carriers 

   
386.2 

   
386.2 

Water 198.8 253.0 
  

839.4 
  

1,291.3 
   Freight 

 
206.2 

  
839.4 

  
1,045.6 

   Recreational 198.8 46.8 
     

245.6 
Pipeline 0.0 0.0 0.0 0.0 0.0 616.8 240.1 856.9 
Rail 0.0 468.4 0.0 0.0 0.0 0.0 72.1 540.4 
   Freight (Class I) 

 
446.6 

     
446.6 

   Passenger 
 

21.7 
    

72.1 93.8 

         Transit 
 

0.0 
    

47.8 47.8 

         Commuter 
 

13.2 
    

18.4 31.6 

         Intercity 
 

8.6 
    

5.8 14.4 
TOTAL HWY & 
NONHWY 16,898.5 6,735.0 65.3 2,099.3 839.4 

  
638.7 312.9 27,589.0 

 

Figure 24 Domestic Consumption of Transportation Energy by Mode and Fuel Type 

 (Center for Transportation Analysis Energy and Transportation Science Division, 
2011) 
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As we make our calculations based on energy, measured by Btu, it will be very 

convenient to convert the bbl values above to Btu. To accomplish this we need the 

composition of the petroleum products and their relevant heating values. The composition 

of petroleum products is collected from the Energy Information Agency (Energy 

Information Administration, 2011) and heating values are obtained from Environmental 

Protection Agency (Environmental Protection Agency, 2004) and M.I.T (M.I.T., 2007), 

figure 25. An average heating value of 126,802 Btu/gal is computed by averaging the 

heating values of fuel types with respect to their relevant consumption percentages. Since 

1 bbl of petroleum is equal to 42 gallons, the average heating value of petroleum 

consumed in the U.S. is 5.3257 M Btu/bbl (126,802*42). This value helps us convert the 

values measured in bbls above as in the example below. 

Conversion of bbl to Btu: 

3,445,97 M bbls ∗ 5.3257 M 
Btu
bbl

 = 18.35 Q Btu  

 Delivered Energy Consumption, 
 All Sectors, 2010 Q BTU 

% of 
Total Heat. value (Btu/gal) 

   Liquefied Petroleum Gases 2.82 7.72 91,420 706,120 
   E85  

       Motor Gasoline  17.17 47.03 124,340 5,847,488 
   Jet Fuel  3.14 8.60 135,000 1,161,052 
   Kerosene 0.03 0.08 135,000 11,093 
   Distillate Fuel Oil 7.8 21.36 138,690 2,962,975 
   Residual Fuel Oil 1.02 2.79 149,690 418,197 
   Liquid Fuels Subtotal 36.51 100 126,802 

    Average 
   

126,802 
 

Figure 25 Average Heating Value for Transportation Fuels 

 (EIA, EPA, MTI) 
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Total net oil imports of the U.S. in 2010 are 3,445,97M bbls. By multiplying it to 

the relevant heating value of 5.3257 M Btu/bbl we get 18.35 Q Btu of total net imports 

expressed in energy units. In the same way, the U.S. total imports of 1145.74 M bbls 

from inside of North America is calculated to be 6.1 Q Btu, which means imports from 

outside of the North America, as referred to in Energy Security Act, are 12.25 Q Btu by 

2010. Oil consumption projections as of the date of enactment of the Act by Energy 

Information administration (Energy Information Administration, 2011) shows that oil 

consumption in the U.S. will be 39.1 Q Btu in 2015, 2.14 Q Btu more than 2010 

consumption of 36.96 Q Btu as given above, and 40.55 Q Btu in 2030, 3.59 Q Btu more 

than 2010 consumption.  

The termination dates for our defined short-term and long term are 2015 and 

2030, respectively. U.S. imports 12.25 Q Btu outside from North America, as of the date 

of enactment of Energy Security Act and will consume 2.14 Q Btu more in 2015 and 3.59 

Q Btu more in 2030. It is assumed that, domestic oil production and oil import quantities 

from Canada and Mexico will be the same as 2010 for the timeframes defined as short-

term and long-term, as stated above. Based on these values and assumptions, the U.S. 

targeted oil import reductions are calculated to be 14.39 Q Btu (12.25 + 2.14) for 2015 

and 15.84 Q Btu (12.25 + 3.59) for 2030. Target achievements with respect to I.E.I. are 

calculated by dividing the increased energy independence values relevant to each 

scenario by targeted oil imports reductions. For scenario A under short-term conditions, 

the calculated target achievement is (8146.84 / 14390) * 100 = 56.11%. The targeted oil 

import reduction that is computed as 14.39 Q Btu and is converted to 14390 T Btu for the 

conformance to I.E.I value is 8164.84 T Btu. 
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CO2 emissions reduction target is constituted by president Obama’s 25 November 

2009 announcement of US Emission Target for Copenhagen. In his announcement, 

president Obama set the goals of total CO2 emissions reduction by 17% below 2005 

levels in 2020 and by 42% below 2005 levels in 2030. The 2005 level of CO2 obtained 

from the Energy Information Administration is 6114.2 M metric tons or 13482.25 M lbs. 

With a 42% reduction from this value, the targeted emission level for 2030 is 7819.7 M 

lbs and with a 17% reduction from this value, the targeted emission level for 2020 is 

11190.27 M lbs. Assuming a steady rate in emission reduction through 2020, the targeted 

emission level for 2015 could be calculated as 12622.76 M lbs.  

The difference between the targeted emission levels and starting level gives us the 

emissions reduction targets, which are 859.49 M lbs and 5662.54 M lbs. for 2015 and 

2030, respectively. Target achievements with respect to P.E.I for each scenario are 

calculated by dividing the calculated CO2 reduction quantities by emission reduction 

targets for the relative timeframe. For scenario A under short-term conditions, the 

calculated target achievement is (331.195/ 859.49) * 100 = 38.43%. Target achievement 

values for the other scenarios could be calculated in the same way. 

Calculated CO2 reduction quantities are obtained via differencing the sum of the 

CO2 emission level for currently used fuel types and the CO2 emission level as a result of 

proposed CNG replacement. In order to accomplish this calculation we need CO2 

emission factors, in figure 26, for each fuel type. These factors show the quantity of CO2 

emission in lbs when 1 M (million) Btu of energy is consumed. The calculation of current 

CO2 emission level for scenario A is presented below as an example. 

For scenario A in the short-term: 
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Current CO2 emissions for gasoline = CO2 emission factor for gasoline * gasoline 

consumption according to scenario A in the short-term. 

Current CO2 emissions for gasoline = 154.91 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

 * (5,600.27 * 106) M Btu   

Current CO2 emissions for gasoline = 867,537.31 lbs.  

A value of 5,600.27 T Btu, the calculation of which is given in the beginning of 

this section, is converted to (5,600.27 * 106) M Btu for the conformance to CO2 emission 

factor value, which is 154.91 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

 . After we finish current CO2 emission calculations 

for other fuel types in this way, we can find the overall current CO2 emission value for 

the relevant scenario by summing them up. For scenario A in the short-term, this value is 

1,278,551 lbs. Calculation of the CO2 emission level as a result of CNG replacement for 

scenario A is shown below as an example. 

For scenario A in the short-term: 

CO2 emissions for CNG = CO2 emission factor for CNG * total projected energy 

consumption according to scenario A in the short term 

CO2 emissions for CNG = 116.39 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

 * (8,146.84 * 106) M Btu   

CO2 emissions for CNG = 948,210 lbs 

The value of 8,146.84 T Btu, which is given in the beginning of this section, is 

converted to (8,146.84 * 106) M Btu for conformance to a CO2 emission factor value, 

which is 116.39 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

 . When we subtract the CO2 emission as a result of proposed CNG 

replacement from current CO2 emission value we find CO2 reduction quantities for 

relevant scenarios. For scenario A, this value is 330,341 lbs. 
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Fuel Type                                CO2 Emission Factors (lb CO2/MMBtu) 

Motor Gasoline                     154.91 

Diesel Fuel                     160.3 

LPG (average for fuel use)                     138.75 

Jet Fuel                     154.69 

Residual Fuel Oil (#5 & 6)                     171.98 

Natural Gas                     116.39 
 

Figure 26 CO2 Emission Factors 

 (Environmental Protection Agency, 2004) 

 

Target achievement calculations for the long-term are the same as the short-term 

calculations. As for the values, targeted oil dependency reduction and targeted CO2 

reduction values are the same for both timeframes. On the other hand, due to federal 

government’s fuel efficiency target that affect all cars and light trucks in the long-term, 

projected current energy consumptions of the given scenarios are lower in the long-term 

which affects both targeted oil reduction values, directly, and CO2 reduction quantities by 

changing current CO2 emissions and scenario based CO2 emissions. This difference is the 

result of the assumption based on president Obama’s announcement of an agreement on 

projected fuel efficiency standards with thirteen major automakers which together 

account for over 90% of all vehicles sold in the United States (Office of the Press 

Secretary, 2011). 

According to the proposed rules prepared by the Department of Transportation 

National Highway Traffic Safety Administration, based on the goals that are declared by 

the president, the new CO2 emission standard for cars is 130.5 𝑔𝑟𝑎𝑚𝑠
𝑚𝑖𝑙𝑒

 and the new CO2 
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emission standard for light trucks is 159.1 𝑔𝑟𝑎𝑚𝑠
𝑚𝑖𝑙𝑒

. In the same report the fuel economy 

standard for cars is a minimum 45.61 mpg and for light trucks it is 30.61 mpg. When we 

multiply the new emission standard for cars by the new fuel economy standard for cars 

we get the new emission standard for cars in grams for a gallon of fuel, which is 5952.11 

𝑔𝑟𝑎𝑚𝑠
𝑔𝑎𝑙

. After a simple conversion we could get 13.125 𝑙𝑏𝑠
𝑔𝑎𝑙

 CO2. The value of the new 

emission standard for light trucks is calculated as 10.591 𝑙𝑏𝑠
𝑔𝑎𝑙

 CO2 using the same method.  

The CO2 emission factor for gasoline is 154.91 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

  CO2 and the heating value is 

0.12434 𝑀 𝐵𝑡𝑢
𝑔𝑎𝑙

. When we multiply these two values we get the CO2 emission in lbs for 

burning 1 gallon of gasoline. This value is 154.91 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

  CO2 * 0.12434 𝑀 𝐵𝑡𝑢
𝑔𝑎𝑙

 = 19.262 

𝑙𝑏𝑠
𝑔𝑎𝑙

 CO2. The heating value of a fuel is a unique chemical property under constant 

conditions. Therefore, in order to get a new and better emission standard of 13.125 𝑙𝑏𝑠
𝑔𝑎𝑙

 

CO2 for cars powered by gasoline whose current emission standard is 19.262 𝑙𝑏𝑠
𝑔𝑎𝑙

 , CO2  

the emission quantity for the same amount of heating value needs to be decreased. This 

could be done by using new technologies or changing design parameters of the cars if the 

fuel type remains the same. The reduction ratio of the emission quantity is equal to the 

ratio of the new emission standard to the old emission standard. As a result, to 

accomplish the new emission standard of 13.125 𝑙𝑏𝑠
𝑔𝑎𝑙

 CO2 for gasoline powered cars, 

emission quantity for cars needs to be upgraded to (13.125 𝑙𝑏𝑠
𝑔𝑎𝑙

19.262 𝑙𝑏𝑠
𝑔𝑎𝑙

)� ∗

 154.91 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

  CO2 =  105.56 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

  CO2 . This value is 85.18 𝑙𝑏𝑠
𝑀 𝐵𝑡𝑢

  CO2 for gasoline 
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powered light trucks. New emission quantities for cars and light trucks could be 

calculated in the same way for other fuel types. 

For the long-term scenario calculations, these emission quantities are taken into 

consideration for current CO2 emission calculations and proposed CNG replacement 

scenario CO2 emission calculations. Determination of P.E.I. target achievements is done 

by using these values for cars and light trucks for the relevant scenario. They are also 

used for calculating energy consumption for cars and light trucks in the relevant scenario, 

thus allowing us to determine the I.E.I. target achievements. 
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 IV.  Analysis and Results 

According to analytic hierarchy process assumptions, each of the decision criteria 

need to be compared to the rest of the criteria, one at a time, based on their relative 

importance from the decision makers point of view. In this study, we don’t have decision 

maker’s importance assessment for the two defined decision criteria, positive 

environmental impact and increased energy independency. Hence, we chose to follow a 

way of evaluating all possible relative importance assessments by using all possible main 

values (1-3-5-7-9) from Saaty’s fundamental scale, and rank the scenarios for all of them. 

In this way, we are providing pre-calculating results allowing the decision maker or 

reader to observe the best short-term and long-term scenarios based on his own 

assessment. 

 In table 3, priorities of positive environmental impact and increased energy 

independency relative to the decision maker’s importance assessments can be seen. With 

reference to this table, if a decision maker assesses the increased energy independency 

criterion as very strongly more important than positive environmental impact the priority 

of (P.E.I.) becomes 0.10, which means it is of 10% importance. With the same 

assessment, the priority of (I.E.I) becomes 0.90, which means it has 90% importance. 
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Assess. 1 P.E.I. I.E.I.     Priorities   
P.E.I. 1 0.111 m(P.E.I)= 0.333 p(P.E.I)= 0.10 
I.E.I. 9 1 m(I.E.I)= 3.000 p(I.E.I)= 0.90 

  
Assess. 2 P.E.I. I.E.I.     Priorities   
P.E.I. 1 0.143 m(P.E.I)= 0.378 p(P.E.I)= 0.13 
I.E.I. 7 1 m(I.E.I)= 2.646 p(I.E.I)= 0.88 

  
Assess. 3 P.E.I. I.E.I.     Priorities   
P.E.I. 1 0.200 m(P.E.I)= 0.447 p(P.E.I)= 0.17 
I.E.I. 5 1 m(I.E.I)= 2.236 p(I.E.I)= 0.83 

  
Assess. 4 P.E.I. I.E.I.     Priorities   
P.E.I. 1 0.333 m(P.E.I)= 0.577 p(P.E.I)= 0.25 
I.E.I. 3 1 m(I.E.I)= 1.732 p(I.E.I)= 0.75 

  
Assess. 5 P.E.I. I.E.I.     Priorities   
P.E.I. 1 1 m(P.E.I)= 1 p(P.E.I)= 0.50 
I.E.I. 1 1 m(I.E.I)= 1 p(I.E.I)= 0.50 

  
Assess. 6 P.E.I. I.E.I.     Priorities   
P.E.I. 1 3 m(P.E.I)= 1.732 p(P.E.I)= 0.75 
I.E.I. 0.333 1 m(I.E.I)= 0.577 p(I.E.I)= 0.25 

  
Assess. 7 P.E.I. I.E.I.     Priorities   
P.E.I. 1 5 m(P.E.I)= 2.236 p(P.E.I)= 0.83 
I.E.I. 0.2 1 m(I.E.I)= 0.447 p(I.E.I)= 0.17 

  
Assess. 8 P.E.I. I.E.I.     Priorities   
P.E.I. 1 7 m(P.E.I)= 2.646 p(P.E.I)= 0.88 
I.E.I. 0.143 1 m(I.E.I)= 0.378 p(I.E.I)= 0.13 

  
Assess. 9 P.E.I. I.E.I.     Priorities   
P.E.I. 1 9 m(P.E.I)= 3.000 p(P.E.I)= 0.90 
I.E.I. 0.111 1 m(I.E.I)= 0.333 p(I.E.I)= 0.10 

 

Table 3 Pair-wise Comparison Matrices 

 
Using the data obtained from the Center for Transportation Analysis Energy and 

Transportation Science Division that is shown in figure 24, current energy consumption 

of each alternative by fuel type, as well as total energy consumptions of the alternatives, 
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are calculated. The benefit of these calculations is that the results exhibit how much each 

of the vehicle type is currently contributing to the energy consumption, which means how 

much of the imported oil will be replaced by CNG. These results help us get increased 

energy independence values in comparison with the import reduction targets for the 

short-term and the long-term. They are also used for comparing the alternatives with 

respect to this criterion. Total energy consumptions for four scenarios for both 

timeframes are provided below in table 4.  

According to these values, in the short-term, scenario D has the highest target 

achievement rate, followed by scenario A, then Scenario B. Scenario C has the lowest 

contribution to decreasing energy dependency. This is simply the result of the differrence 

between total energy consumptions of the scenarios. In the long-term, although the 

combinations of scenarios doesn’t alter, their total energy consumptions vary compared 

to their short-term counterparts. This is because of the new proposed energy efficiency 

standards. Scenarios which involve a greater amount of light highway vehicle energy 

consumption, lose their advantage of contributing to energy security in the long-term, 

because new standards decrease the energy consumption of cars and light trucks. In 

parallel to this, scenario B has the highest target achievement rate, followed by scenario 

C, then Scenario A. Scenario D, which involves only light vehicles in its combination has 

the lowest contribution to decreasing energy dependency in the long-term. 
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Scenarios Energy Consumption by Fuel Type T Btu 
% of targeted 

oil 
dependency 

reduction 
(I.E.I) 

  

  Gasoline Diesel fuel LPG 
 Res. fuel 

oil Total 
Short Term   
Scenerio A 
: 5,600.27 2,245.00 21.77 279.80 8,146.84 56.61 
Scenerio B 
: 818.10 6,343.60 20.30 839.40 8,021.40 55.74 
Scenerio C 
: 4,019.70 3,342.70 32.65 419.70 7,814.75 54.31 
Scenerio D 
: 8,021.05 195.70 22.50   8,239.25 57.26 
Long Term 

 Scenerio A 
: 3,907.26 2,213.19 18.44 279.80 6,426.02 39.87 
Scenerio B 
: 818.10 6,343.60 20.30 839.40 8,043.40 49.82 
Scenerio C 
: 3,219.59 3,304.83 27.66 419.70 6,982.79 43.30 
Scenerio D 
: 5,451.83 147.98 17.51   5,617.33 34.89 

 

Table 4 Energy Consumption by Fuel Type and I.E.I. values 

 
Target achievement values are calculated based on CO2 emission quantities of 

scenarios and emission reduction targets which are mandated by The Energy Security Act 

of 2011 for the two timeframes. Results can be seen in table 5. These results help us 

understand the contribution of each scenario to the positive environmental impact 

criterion. They are also used for comparing the alternatives with respect to this criterion. 

According to target achievement values, in the short-term, scenario B has the highest 

target achievement rate, followed by scenario A, then Scenario C. Scenario D has the 

lowest contribution to positive environmental impact.  

In the long-term, scenario C has the highest target achievement rate, followed by 

scenario B, then Scenario A. Scenario D has the lowest contribution to positive 

environmental impact. The reason behind the difference of the two timeframes is the 



61 

changing magnitude of the CO2 reduction targets by time. Scenarios which involve a 

greater amount of light highway vehicle energy consumption, lose their advantage of 

contributing to emission reduction goals in the long-term, because new standards increase 

the CO2 reduction standards of cars and light trucks. 

Scenarios 

  

CO2 Emissions lbs % of 
targeted 
emission 
reduction 

(P.E.I) Gasoline Diesel fuel LPG  Fuel oil Total 
Short Term     

Scenerio A : 
Current 867,537.31 359,873.50 3,020.13 48,120.00 1,278,550.94 

38.43 CNG 651,815.04 261,295.55 2,533.42 32,565.92 948,209.93 
Reduction 215,722.27 98,577.95 486.70 15,554.08 330,341.01 

Scenerio B : 
Current 126,731.87 1,016,879.08 2,816.63 144,360.01 1,290,787.59 

41.56 CNG 95,218.66 738,331.60 2,362.72 97,697.77 933,610.75 
Reduction 31,513.21 278,547.48 453.91 46,662.25 357,176.84 

Scenerio C : 
Current 622,691.73 535,834.81 5,233.80 72,180.01 1,237.22 

37.97 CNG 467,852.88 389,056.85 3,800.13 48,848.88 910.84 
Reduction 154,838.84 146,777.96 1,433.66 23,331.12 326.38 

Scenerio D : 
Current 1,242,540.86 31,370.71 3,121.88   1,277,033.44 

37.01 CNG 933,570.01 22,777.52 2,618.78   958,966.31 
Reduction 308,970.85 8,593.19 503.10   318,067.13 

Long Term     

Scenerio A : 
Current 605,272.89 354,774.04 2,558.93 48,120.00 1,010,725.86 

6.08 CNG 377,212.79 253,900.25 2,525.40 32,565.92 666,204.36 
Reduction 228,060.10 100,873.79 33.53 15,554.08 344,521.50 

Scenerio B : 
Current 126,731.87 1,016,879.08 2,816.63 144,360.01 1,290,787.59 

6.31 CNG 95,218.66 738,331.60 2,362.72 97,697.77 933,610.75 
Reduction 31,513.21 278,547.48 453.91 46,662.25 357,176.84 

Scenerio C : 
Current 498,747.06 529,764.11 4,434.55 72,180.01 1,105,125.73 

6.83 CNG 287,015.47 379,421.83 3,210.45 48,848.88 718,496.63 
Reduction 211,731.59 150,342.28 1,224.10 23,331.12 386,629.09 

Scenerio D : 
Current 844,543.40 23,721.52 2,430.08   870,695.00 

5.98 CNG 518,209.86 11,684.58 2,029.09   531,923.53 
Reduction 326,333.54 12,036.94 400.98   338,771.47 

 

Table 5 CO2 Emissions by Fuel Type and P.E.I. values 

 
The priorities of each scenario are calculated to rank them with respect to each 

criterion. These priorities are shown in table 6 for the short-term and table 7 for the long-

term. According to these results, scenario B has the top priority with respect to P.E.I. 
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criterion in the short-term, followed by scenario A, scenario C and scenario D, 

respectively. In other words, using CNG for cargo and public transportation purposes 

provides the highest contribution to reduce the environmental worries in the short-term. 

With respect to I.E.I. criterion in the short-term, scenario D has the top priority, followed 

by scenario A, scenario B and scenario C, respectively. Utilizing CNG for the fuel 

requirement for residential vehicles contributes more to the energy security objective than 

the other proposed utilization options, in the short-term.   

In the long-term, with respect to P.E.I. criterion scenario C has the top priority, 

followed by scenario B, scenario A and scenario D, respectively. Implementation of CNG 

as a fuel for the vehicles which don’t have critical on board space limitation yields the 

highest benefit when only environmental worries are taken into consideration, in the 

long-term. Scenario B has the top priority, with respect to I.E.I. criterion in the long-term 

followed by scenario A, scenario C and scenario D, respectively. We can say that, using 

CNG for cargo and public transportation purposes helps the most to achieve energy 

security goals. 

P.E.I. Scenario A Scenario B Scenario C Scenario D     Priorities   

Scenario A 1.000 0.925 1.012 1.039 m(A)= 0.993 p(A)= 0.2480 

Scenario B 1.081 1.000 1.094 1.123 m(B)= 1.074 p(B)= 0.2682 

Scenario C 0.988 0.914 1.000 1.026 m(C)= 0.981 p(C)= 0.2450 

Scenario D 0.963 0.891 0.975 1.000 m(D)= 0.956 p(D)= 0.2388 
  

I.E.I. Scenario A Scenario B Scenario C Scenario D     Priorities   

Scenario A 1.000 1.016 1.042 0.989 m(A)= 1.012 p(A)= 0.2528 

Scenario B 0.985 1.000 1.026 0.974 m(B)= 0.996 p(B)= 0.2489 

Scenario C 0.959 0.974 1.000 0.948 m(C)= 0.970 p(C)= 0.2425 

Scenario D 1.011 1.027 1.054 1.000 m(D)= 1.023 p(D)= 0.2557 
 

Table 6 Comparison Results of the Alternatives for the short-term 
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P.E.I. Scenario A Scenario B Scenario C Scenario D         

Scenario A 1.000 0.964 0.890 1.017 m(A)= 0.966 p(A)= 0.2413 

Scenario B 1.037 1.000 0.924 1.055 m(B)= 1.003 p(B)= 0.2503 

Scenario C 1.123 1.083 1.000 1.142 m(C)= 1.086 p(C)= 0.2711 

Scenario D 0.984 0.948 0.876 1.000 m(D)= 0.951 p(D)= 0.2373 

  

I.E.I. Scenario A Scenario B Scenario C Scenario D         

Scenario A 1.000 0.800 0.921 1.143 m(A)= 0.958 p(A)= 0.2375 

Scenario B 1.250 1.000 1.151 1.428 m(B)= 1.197 p(B)= 0.2968 

Scenario C 1.086 0.869 1.000 1.241 m(C)= 1.040 p(C)= 0.2579 

Scenario D 0.875 0.700 0.806 1.000 m(D)= 0.838 p(D)= 0.2078 
 

Table 7 Comparison Results of the Alternatives for the long-term 

 
Calculated overall rankings of scenarios based on decision maker’s every possible 

assessment are presented in the following tables, table 8 for the short-term and table 9 for 

the long-term. These are the final results we aimed to obtain from the analytic hierarchy 

process. We can draw conclusions based on these ranking values, because they show the 

ranking of each scenario for each assessment, and for each defined timeframe. According 

to these results, for the short-term period, scenario D is preferable to other scenarios if a 

decision maker gives increased energy independency at least essential or strong 

importance compared to positive environmental impact. If he gives I.E.I. less than 

essential or strong importance compared to I.E.I., scenario B becomes preferable. 

Therefore, we could say that in the short-term period, the best CNG scenario shifts from 

utilization of CNG for residential vehicle fuel needs to cargo and public transportation 

purposes as the decision maker’s main concern shifts from energy security to 

environmental issues.  

When it comes to the long-term period, scenario B is preferable to other scenarios 

if a decision maker favors increased energy independency by any magnitude or perceives 
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the two criteria’s importance equal. If he or favors P.E.I. scenario C becomes preferable. 

Hence, we could say that in the long-term, using CNG for cargo and public transportation 

purposes yields the most benefit from CNG utilization if the most important issue is 

energy security or both objectives have the same importance for the decision maker. 

Otherwise, using CNG as a fuel for vehicles which don’t have critical on board space 

limitations becomes the best scenario for the long-term. Scenario D is the lowest ranking 

alternative in all of the assessments, which could mean that utilization of CNG as a 

residential vehicle provides the lowest benefit of all in the long-term. This is mainly 

because of the federal government’s new fuel efficiency standards, affecting only cars 

and light trucks in the long term. 

Assesments Scenarios Ranking 
 

Assesments Scenarios Ranking 
Assess. 1 A 0.2524 

 
Assess. 6 A 0.2492 

  B 0.2509 
 

  B 0.2634 
  C 0.2428 

 
  C 0.2444 

  D 0.2540 
 

  D 0.2430 
  

 
  

Assess. 2 A 0.2522 
 

Assess. 7 A 0.2488 
  B 0.2513 

 
  B 0.2650 

  C 0.2428 
 

  C 0.2446 
  D 0.2536 

 
  D 0.2416 

  

 
  

Assess. 3 A 0.2520 
 

Assess. 8 A 0.2486 
  B 0.2521 

 
  B 0.2658 

  C 0.2429 
 

  C 0.2447 
  D 0.2529 

 
  D 0.2409 

  

 
  

Assess. 4 A 0.2516 
 

Assess. 9 A 0.2485 
  B 0.2537 

 
  B 0.2662 

  C 0.2432 
 

  C 0.2448 
  D 0.2515 

 
  D 0.2405 

  

    Assess. 5 A 0.2504 
      B 0.2585 
      C 0.2438 
      D 0.2472 
    

 

Table 8 Overall Ranking of Scenarios for the short-term 

 



65 

Assesments Scenarios Ranking 
 

Assesments Scenarios Ranking 
Assess. 1 A 0.2379 

 
Assess. 6 A 0.2403 

  B 0.2921 
 

  B 0.2619 
  C 0.2592 

 
  C 0.2678 

  D 0.2108 
 

  D 0.2299 
  

 
  

Assess. 2 A 0.2380 
 

Assess. 7 A 0.2407 
  B 0.2910 

 
  B 0.2581 

  C 0.2596 
 

  C 0.2689 
  D 0.2115 

 
  D 0.2324 

 

 
  

Assess. 3 A 0.2381 
 

Assess. 8 A 0.2408 
  B 0.2890 

 
  B 0.2561 

  C 0.2601 
 

  C 0.2694 
  D 0.2127 

 
  D 0.2336 

  

 
  

Assess. 4 A 0.2384 
 

Assess. 9 A 0.2409 
  B 0.2852 

 
  B 0.2550 

  C 0.2612 
 

  C 0.2697 
  D 0.2152 

 
  D 0.2344 

  

    Assess. 5 A 0.2394 
      B 0.2735 
      C 0.2645 
      D 0.2226 
    

 

Table 9 Overall Ranking of Scenarios for the long-term 

 
We can draw the conclusion that if the government’s new fuel efficiency and 

emission standards could be implemented successfully, as assumed in the long-term 

period part of this work, they will have a great impact on light vehicles. In table 10, 

current fuel efficiency standards is obtained from the report prepared for congress by the 

Energy Policy, Resources, Science, and Industry division and they reflect standards for 

2008 through 2010 (Energy Policy Resources, Science, and Industry Division, 2007). The 

target values for fuel efficiency is obtained from the supplemental report of intent 

prepared by the Environmental Protection Agency (Environmental Protection Agency, 

2011) based on president Obama’s fuel efficiency announcement of 2011 (Office of the 

Press Secretary, 2011).  
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Current CO2 emission values are received from The Environmental Protection 

Agency’s emission factors data sheet (Environmental Protection Agency, 2004) . The 

target values for CO2 emissions are calculated as shown in chapter 3. It could be realized 

from the table that a significant development is projected for fuel efficiencies. The target 

of about 60% efficiency improvement for cars is drastic and is a matter of debate. 

Targeted CO2 emission standards have the most impact on gasoline and diesel which 

requires a great development for cars and light trucks powered by these fuels. 

  

Standards for cars and Light Trucks 

Fuel Efficiency Cars- L.Trucks CO2 Emission Cars and L.Trucks  

 (MPG) (lb CO2/ MM Btu) 
Current Target Current Target 

Gasoline 27.50 / 23.50 45.61 / 30.19 154.91 105.56 / 85.18 
Diesel 27.50 / 23.51 45.61 / 30.20 160.30 95.54 / 77.10 
LPG 27.50 / 23.52 45.61 / 30.21 138.75 143.56 / 115.86 
Natural 
Gas 27.50 / 23.53 45.61 / 30.22 116.39 103.30 / 83.58 

 

Table 10 Fuel Efficiency and Emission Standards for Cars and Light Trucks 

 
In the following chapter, findings of this study will be introduced for the purpose 

of drawing useful conclusions. Furthermore, our recommendations will be presented 

based on exhibited findings and conclusions.  
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 V.  Conclusions and Recommendations 

In this chapter, we will review and provide answers to the research sub-questions 

that we posed in chapter 1. In this way, we will be able to address the main research 

question more confidently.  Finally we will propose our recommendations. 

Summary of Findings 

For the purpose of providing a well structured explanation to the research 

question it is an effective and organized method to start with addressing explanatory 

questions. Here, we will try to give sound answers based on our literature review and 

calculations for this work. 

Based on the current and projected supply of NG in the US, how much of the 

US transportation sector fuel requirement could ‘possibly’ be replaced by CNG? 

(Anecdotally – how much CNG would it take to replace all of the US transportation 

sector fuel requirement, and how long would it last?) 

Considering the abundant domestic natural gas supply in the U.S., natural gas 

basically can replace all of the transportation sector fuel consumption for a long period of 

time. The U.S. future natural gas supply is projected as 2552 Tcf or 2,615.8 Q Btu. This 

amount is sufficient for 105 years according to current natural gas consumption of 24,8 Q 

Btu per year. If all of the transportation fuel requirement is replaced by CNG, it will 

require an additional 27.5 Q Btu per year.   Under the assumption that these 

consumptions will hold the same, domestic supplies would be able to satisfy this total 

demand for 50 years. This assumes production and related infrastructure is established to 

meet this increased demand. 
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Based on current US infrastructure (and relatively low cost changes), how 

much of the US transportation sector fuel requirement could ‘feasibly’ be replaced 

by CNG?  

To be able to answer this question, the bottlenecks of the natural gas supply 

system need to be identified. The natural gas supply system infrastructure is composed of 

production facilities, LNG import terminals, pipelines and refueling stations. As they are 

used for import purpose, LNG import terminals are not considered as a relevant element 

of the structure with respect to the aim of this study. With recent significant capacity 

additions pipelines have become a non-constraint for the supply system. Scarcity of 

refueling stations is a major problem for the delivery of natural gas. It can be identified as 

a limitation rather than a bottleneck. The small number of refueling stations in the U.S. is 

far from supporting the transportation sector. Assuming that we can refuel at home or 

effective solutions to this limitation are developed, the main bottleneck of the system 

reveals itself as production capacity.  

Production capacity has 65% utilization on annual average, but in the peak 

demand time during winter the capacity is not sufficient to meet daily demand on some 

days. At this point, underground natural gas storage capacity takes action. This capacity 

is able to meet four times the peak time demand, based on historical data. Taking these 

facts into consideration, and assuming the current import rate of 10.9% will be stable, 

55.66% of the annual transportation sector fuel requirement could be feasibly replaced by 

CNG. According to The Energy Security Act of 2011 requirements this ratio drops a little 

to 53.94%. If policy makers choose to use only domestic natural gas, 45.82% of total 

sector requirement could be feasibly replaced. 
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What are the current barriers to CNG as a transportation fuel replacement? 

What is the cost-benefit (to the individual and nation) of using CNG power vehicles? 

What is needed to make CNG cost effective, and what is the potential impact of that 

change? 

There are some infrastructural limitations as mentioned in the previous question. 

Production capacity needs to be increased if a more common usage than feasible 

replacement ratios are desired. Underground storage capacity is the main storage utility 

for natural gas. It consists of depleted reservoirs and salt caverns. Any storage other than 

underground storage will require great investments, since natural gas cannot be stored in 

barrels like oil. Therefore, there is nothing to be done about storage capacity. Current 

pipeline capacity, with the significant investments over the last five years, is capable of 

meeting three times the highest daily demand. Refueling infrastructure and on-board 

storage capacity are the main barriers using CNG vehicles. Refueling station investments 

are expensive. Although the home refueling option does not put a great monetary burden 

on vehicle owners’ shoulders, the range of the CNG powered vehicles are short and there 

is not enough refueling station infrastructure to support long distance travels. Besides, 

payback times of switching to CNG powered vehicles are not promising. This is the 

dilemma about common CNG usage as a transportation fuel. Fuel delivery companies do 

not want to invest a great amount of money while they are not forecasting a payback. On 

the other side, vehicle owners do not want to use a car that they cannot easily refuel.  

At this point, policy makers should take action. If environmental concerns and 

energy security have great importance as they are declared to be, some incentives need to 

be proposed to each side. Tax incentives may reduce the payback times of CNG powered 
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vehicles, motivating people to think about it. Subsidies may trigger natural gas 

production and delivery companies as well as vehicle production companies. In this 

perspective, it is encouraging to see that president Obama announced $30 M in funding 

for natural gas vehicles breakthroughs in February 2012 (Department of Energy, 2012). 

Developing LNG normal temperature storage capability or increasing the safe 

compression of CNG in order to provide a longer range could be the breakthroughs. With 

successful implementations of effective precautions and developments, the nation could 

develop its energy security while it could decrease energy related environmental impact. 

Individuals could save money by using a cheaper fuel if the life cycle ownership costs of 

CNG vehicles are not seriously higher than their current vehicles. 

What are the possible and most feasible incremental changes (infrastructure, 

policy, or technology) that would make CNG more available or more cost effective 

for the US transportation sector? 

It is not a secret that vehicle users would not switch their vehicles to CNG unless 

they anticipate monetary benefit. Even if the structure is well developed and natural gas 

vehicles provide the highest ranges as a result of their technology, they will still need to 

be incentivized. This fact is both current for vehicle owners and companies. Thus, 

effective policies supporting the use of CNG as a transportation fuel would yield the 

highest impact on availability and cost effectiveness of CNG for the U.S. transportation 

sector. 
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What is the best ‘short-term scenario’ for CNG use in the US transportation 

sector? What is the best ‘long-term scenario’ for CNG use in the US transportation 

sector?  

According to the results of our application of analytic hierarchy process based on 

energy security and environmental impact criteria;  

For the short-term: 

The best scenario is the utilization of CNG for residential vehicles when increased 

energy independency has at least strong importance compared to positive environmental 

impact. CNG usage for cargo and public transportation purposes is the best scenario 

when the energy security is assessed as moderately, equally, or less important than 

environmental concern.  

For the long-term: 

The best scenario is using CNG for cargo and public transportation purposes 

when energy security is evaluated more important than or equally important as 

environmental concerns. If energy security is perceived as less important, application of 

CNG use by the vehicles with no fuel storage space limitation becomes the best scenario. 

In the next section conclusions inferred from addressing research sub-questions will be 

provided. 

Conclusions 

The results of this study on the feasibility of compressed natural gas as a 

replacement fuel for the U.S. transportation sector, in the light of the information 

summarized in the previous section, are strongly positive. We have shown evidence that 
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domestic natural gas reserves are promising for a long utilization timeframe, even if the 

entire energy requirement of transportation sector is met by it. If the limitations regarding 

refueling and vehicle range can be solved (government subsidies and incentives could aid 

this), the unutilized natural gas supply infrastructure could meet about half of the total 

transportation fuel need with very limited additional investments. Resolving these 

problems should not be considered one of the more difficult undertakings. We 

exemplified that the federal government could be seen on the right track. In last three 

years, president Obama and the government announced The Energy Security Act with 

new fuel efficiency and emission standards. In order to accomplish these bold goals they 

shook hands with major automakers and shared their vision. Natural gas, as we observed 

in our target achievement calculations, could be a great tool for reaching these targets. In 

parallel to the inference of our study, to attract attention to the importance of the issue, 

president Obama announced $30 M in funding for natural gas vehicle research. The 

purpose is to encourage scientists, engineers, and entrepreneurs to find ways to harness 

the abundant supplies of domestic natural gas for vehicles.  

Pipeline capacity has increased by 25% in the last four years, even though it was 

capable of meeting three times the highest daily demand four years ago. Natural gas 

production capacity, being the bottleneck of natural gas supply system is keeping pace 

with other system developments. In just 2011, fractioning capacity has increased by 

14.7%. Besides the useful conclusions drawn from the application of the analytic 

hierarchy process to select short-term and long-term scenarios, target achievement values 

of scenarios has shown that CNG’s contribution could be very significant for the success 

of the federal governments goals. 



73 

The feasibility of compressed natural gas as a replacement fuel for the U.S. 

transportation sector is supported by the robust characteristics of the supply system and 

CNG itself. The results of this study and the strong initiatives put forth by decision 

makers, automakers, and infrastructure investors also show support for the extended use 

of CNG in transportation. In the next section recommendations for further research will 

be proposed. 

Recommendations 

Since CNG is proposed as a feasible replacement fuel for the U.S. transportation 

sector, further research areas reveal themselves intrinsically. Further research could be 

conducted through investigating the development of natural gas extraction processes to 

be able to recover a higher rate of the reserves from the reservoirs. Also increasing 

natural gas processing facility efficiencies to gain an overall processing capacity 

improvement might be of interest. Natural gas on-board storage capacity and fast home 

refueling technology developments could be sought. Additional storage options other 

than underground storage capacity may be inquired. 

Recovery capabilities of natural gas captured in hydrate formations could be 

questioned in order to increase the recoverable reserves. The next topic to study as a 

result of the development and implementation of natural gas recovery from these 

reservoirs, if it could be possible, and since the reserves captured in hydrate formations 

are projected to be much more than underground reserves, could be on the market for 

export options. 



74 

 Bibliography 

“2017–2025 Model Year Light-Duty Vehicle GHG Emissions and CAFE Standards: 
Supplemental Notice of Intent” (2011). Environmental Protection Agency, (2011). 
Retrieved March 4, 2012, from http://www.gpo.gov/fdsys/pkg/FR-2011-08-
09/pdf/2011-19905.pdf 

 
“Additions to Capacity on the U.S. Natural Gas Pipeline Network” (2007). Energy 

Information Administration, (2008). Retrieved January 24, 2012, from 

 

http://www.eia.gov/pub/oil_gas/natural_gas/feature_articles/2008/ngpipelinenet/n
gpipelinenet.pdf 

Alias, M. A. (2008). Study of Sequential Multipoint Injection Nozzle Effect of  
Compressed Natural Gas Engine, Master's Thesis, Faculty of Mechanical 
Engineering University, Pahang, Malaysia. 
  

“Alternative Fuels & Advanced Vehicles Data Center” U.S. Department of Energy, 
(2012). Retrieved February 26, 2012, from 
http://www.afdc.energy.gov/afdc/fuels/stations_counts.html 

 
 “Annual Energy Outlook 2011.” Energy Information Administration, Washington, D.C. 
 
“Annual Energy Review 2010.” Energy Information Administration, Washington, D.C. 
  
Borraz-Sanchez, C. (2010). Optimization Methods for Pipeline Transportation of Natural 

Gas, Ph.D. Thesis, University of Bergen Department of Informatics, Bergen, 
Norway. 

 
Coyle, G. (2004). The Analytic Hierarchy Process (AHP). Retrieved March 5, 2012, from 

http://www.booksites.net/download/coyle/student_files/AHP_Technique.pdf 
 
“CRS Report for Congress” (2007). Energy Policy Resources, Science, and Industry 

Division. (2007), Washington, D.C. 
 
Dalalah, D., AL-Oqla, F., & Hayajneh, M. (2010). “Application of the Analytic 

Hierarchy Process (AHP) in Multi-Criteria Analysis of the Selection of Cranes.” 
Jordan Journal of Mechanical and Industrial Engineering , 4(5), 567-578. 

 
“Electronic Code of Federal regulations” (n.d.). Government Printing Office. 

Retrieved February 25, 2012, from http://ecfr.gpoaccess.gov/cgi/t/text/text-
idx?c=ecfr&sid=99af8fa03f56129e6aa95b8b8912fba3&rgn=div8&view=text&no
de=49:3.1.1.1.8.1.9.1&idno=49 

 



75 

“Emissions of Greenhouse Gases in the United States” (2009). Energy Information 
Administration, (2011). Retrieved January 26, 2012, from 

 
http://www.eia.gov/environment/emissions/ghg_report/pdf/tbl3.pdf 

“Energy Supply and Disposition by Type of Fuel” (2012). U.S. Cencus Bureau. 
Retrieved February 20, 2012, from 
http://www.census.gov/compendia/statab/2012/tables/12s0927.pdf 

 
Fessler, D. (2011). A New Favorite in Natural Gas Supply. Retrieved February 10, 2012, 

from http://www.investmentu.com/2011/September/natural-gas-processing-
market.html 

 
Hefner, R. A. (2009). The Grand Energy Transition. Hoboken, NJ: John Wiley & Sons, 

Inc. 
 
“How Dependent Are We on foreign oil?” (2011). United States Department of Energy 

 (2011). Retrieved January 16, 2012, from Energy Information Administration 
http://205.254.135.7/energy_in_brief/foreign_oil_dependence.cfm 

 
“International Energy Outlook 2011”. United States Department of Energy, (2011). 

Retrieved January 16, 2012, from 
 

http://www.eia.gov/forecasts/ieo/index.cfm  

Lumato, M. M. (2005). Natural Gas aS Fuel for Commuter Buses in dar es Salaam. 
Master’s Thesis, Norwegian University of Science and Technology, Trondheim, 
Norway. 

 
McElroy, M. B. (2010). Energy: Perspectives, Problems, and Prospects. Oxford 

University Press, Oxford, United Kingdom. 
 
M.I.T. (2007). Units & Conversions Fact Sheet. Retrieved January 25, 2012, from 

http://www.mitenergyclub.org/assets/2008/11/15/Units_ConvFactors.MIT_Energ
yClub_Factsheet.v8.pdf 

 
M.I.T. (2010). The Future of Natural Gas. Massachusetts Institute of Technology, 

Cambridge, MA. 
 
Mokhatab, S. P. (2006). Handbook of Natural Gas Transmission and Processing. 

Burlington,MA. Gulf Professional Publishing. 
 
Murphy, P. J. (2010). The Role of Natural Gas as a transportation fuel. Massachusetts 

Institute of Technology. Cambridge, MA. 
 
“Natural Gas 1998: Issues and Trends”. United States Department of Energy (1999). 

Retrieved January 19, 2012, from Energy Information Administration: 
http://www.eia.doe.gov/environment.html 



76 

 
“Natural Gas Consumption by Sector” (2010).  Energy Information Administration, 

Retrieved January 26, 2012, from 
http://www.eia.gov/totalenergy/data/annual/pdf/sec6_12.pdf 

 
“Natural Gas Pipeline Capacity Additions in 2011” (2011). Energy Information 

Administration, (2012). Retrieved February 23, 2012, from 
http://www.eia.gov/todayinenergy/detail.cfm?id=5050# 

 
“Natural Gas Pipeline Capacity & Utilization” (2011). Energy Information 

 Administration, Retrieved January 26, 2012, from 

 

http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/usa
ge.html 

“Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its 
Transportation to Market” (2006). Energy Information Administration, (2006). 
Retrieved January 25, 2012, from 
http://www.arcticgas.gov/sites/default/files/documents/2006-eia-ng-
processing.pdf 

 
“North American LNG Import Terminals” (2012). Federal Energy Regulatory 

Commision. Retrieved February 25, 2012, from 
http://www.ferc.gov/industries/gas/indus-act/lng/LNG-existing.pdf 

 
“President Obama Announces Funding for Breakthroughs in Natural Gas and Biofuels as 

Alternative Fuels for Vehicles” (2012). Department of Energy, 2012. Retrieved 
February 28, 2012, from

 

 http://energy.gov/articles/president-obama-announces-
funding-breakthroughs-natural-gas-and-biofuels-alternative-fuels 

“President Obama Announces Historic 54.5 mpg Fuel Efficiency Standard” (2012). 
Office of the Press Secretary. Retrieved March 4, 2012, from 
http://www.whitehouse.gov/the-press-office/2011/07/29/president-obama-
announces-historic-545-mpg-fuel-efficiency-standard 

 
“President to Attend Copenhagen Climate Talks” Office of the Press Secretary, (2009). 

Retrieved February 25, 2012, from http://www.whitehouse.gov/the-press-
office/president-attend-copenhagen-climate-talks 

 
Saaty, T. L. (2008). Decision Making With The Analytic Hierarchy Process. 

International Journal of Services Sciences, 1(1), 83-98. 
 
Saaty, T. L. (1990). How to Make a Decision: The Analytic Hierarchy Process. European 

Journal of Operational Research, 48(1), 9-26. 
 
Saaty, T. L. (1980). The Analytical Hierarchy Process. New York. McGraw-Hill. 



77 

 
“Shale Gas and New Petrochemicals Investment: Benefits for the Economy, Jobs, and  

US Manufacturing.” American Chemistry Council (2011). 
 
Speight, J. (1993). Gas Processing: Environmental Aspects and Methods. Oxford, 

United Kingdom, Butterworth Heinemann. 
 
“Text of S. 689: Energy Security Act of 2011” Govtrack.us., (2011). Retrieved February 

25, 2012, from http://www.govtrack.us/congress/billtext.xpd?bill=s112-689 
 
“Transportation Energy Data Book 30th Edition.” Center for Transportation Analysis 

Energy and Transportation Science Division (2011), Tennessee. 
 
Triantaphyllou, E. (2000). Multi-Criteria Decision Making Methods: A Comparative 

Study. Dordrecht, Netherlands. Kluwer Academic Publishers. 
 
“Unit Conversions, Emissions Factors and Other Reference Data”. Environmental 

Protection Agency, (2004). Retrieved January 26, 2012, from 

 
http://www.epa.gov/cpd/pdf/brochure.pdf 

“U.S. Natural Gas Processing Capacity Expands Rapidly”. U.S. Energy Information 
Administration, (2011). Retrieved February 25, 2012, from 
http://www.eia.gov/todayinenergy/detail.cfm?id=3090 

 
“U.S. Net Imports by Country” (2011). Energy Information Administration, (2011). 

Retrieved February 28, 2012, from 
http://www.eia.gov/dnav/pet/pet_move_neti_a_ep00_IMN_mbblpd_a.htm 

 
“What is Natural Gas?” (2011). NaturalGas.org. Retrieved January 17, 2012, from  

http://www.naturalgas.org/overview/background.asp 
 
Zimmermann, H.-J. (1991). Fuzzy Set Theory and Its Applications. Boston, MA. Kluwer 

Academic Publishers. 
 
 



78 

Vita 
 
 
 
 Capt Veysel UZ is a supply officer at Turkish Air Force. He graduated from the 

Turkish Air Force Academy with a BS in Aerospace Engineering. His assignment prior to 

being stationed at AFIT was as Depot and Distribution Officer in Air Training Command, 

Izmir, Turkey. He will graduate from AFIT with a MS in Logistics and Supply Chain 

Management. Upon graduation, he will be reassigned to his previous position. 

 
 
 
 
 
 
 
 
 
 
 
 



 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

22-03-2012 
2. REPORT TYPE  

Master’s Thesis 
3. DATES COVERED (From – To) 

Oct 2011 - Mar 2012 
4.  TITLE AND SUBTITLE 

CNG as a Feasible Replacement for the U.S. Transportation Sector  

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Uz, Veysel, Captain, Turkish Air Force 
 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Street, Building 642 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
AFIT/LSCM/ENS/12-21 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
  
      Intentionally Left Blank 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 

 
13. SUPPLEMENTARY NOTES  
 
14. ABSTRACT  
There has been much attention for many years on reducing U.S. fuel imports problem in order to improve energy independence. The transportation 
sector is one of the most important components with its share of 28% of total U.S. energy consumption. In this research, compressed natural gas 
(CNG) is examined to see if it can provide at least a partial solution to the problem of finding an alternative fuel for the U.S. transportation sector.  
To be able to answer this question it is essential to understand both the supply and demand sides of the problem. This research aims to exhibit the 
availability and adequacy of CNG to be a full or partial fuel replacement for U.S. transportation sector needs, the factors that prevent CNG from 
being a widely used transportation fuel, the cost-benefit of using CNG as a vehicle fuel and feasible changes to make CNG more cost effective. In 
conjunction with putting forth this information for consideration, the short and long term best scenarios for CNG use in the transportation sector, 
provided through the application of Analytic Hierarchy Process (AHP), is proposed. 
 
 
15. SUBJECT TERMS 
       Energy, Transportation, Emissions, Energy Security, Natural  Gas, Compressed Natural Gas 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

90 

19a.  NAME OF RESPONSIBLE PERSON 
Bradley Anderson, Lt.Col., USAF (ENS) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

19b.  TELEPHONE NUMBER (Include area code) 
(937)  255-3636, ext 4358; e-mail:  Bradley.Andersonl@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 



 

 


	0 I.  Introduction
	Background of the Study
	Problem Statement  
	Assumptions
	Scope and Limitations
	Importance of the Study

	1 II.  Literature Review
	Natural Gas
	CNG as a Transportation Fuel
	Reserves
	Infrastructure
	Production
	/
	Transportation
	LNG Imports
	Pipelines
	Refueling

	2 III.  Methodology
	Introduction
	Analytic Hierarchy Process
	The AHP Theory
	Selecting the Best Short-Term and Long-Term Scenarios for CNG Use in the Transportation Sector via AHP
	Target Achievements

	3 IV.  Analysis and Results
	4 V.  Conclusions and Recommendations
	Summary of Findings
	Conclusions
	Recommendations

	5 Bibliography

